231 lines
8.4 KiB
Python
231 lines
8.4 KiB
Python
import numpy as np
|
|
import mercantile
|
|
from pyresample import bilinear, kd_tree, geometry
|
|
|
|
TILE_SIZE = 256
|
|
|
|
class LngLatTransfer():
|
|
|
|
def __init__(self):
|
|
self.x_pi = 3.14159265358979324 * 3000.0 / 180.0
|
|
self.pi = np.pi # π
|
|
self.a = 6378245.0
|
|
self.es = 0.00669342162296594323
|
|
pass
|
|
|
|
def GCJ02_to_BD09(self, gcj_lng, gcj_lat):
|
|
"""
|
|
Convert coordinates from GCJ02 to BD09 coordinate system
|
|
:param lng: Longitude in GCJ02 coordinate system
|
|
:param lat: Latitude in GCJ02 coordinate system
|
|
:return: Converted longitude and latitude in BD09
|
|
"""
|
|
z = np.sqrt(gcj_lng * gcj_lng + gcj_lat * gcj_lat) + 0.00002 * np.sin(gcj_lat * self.x_pi)
|
|
theta = np.arctan2(gcj_lat, gcj_lng) + 0.000003 * np.cos(gcj_lng * self.x_pi)
|
|
bd_lng = z * np.cos(theta) + 0.0065
|
|
bd_lat = z * np.sin(theta) + 0.006
|
|
return bd_lng, bd_lat
|
|
|
|
|
|
def BD09_to_GCJ02(self, bd_lng, bd_lat):
|
|
'''
|
|
Convert coordinates from BD09 to GCJ02 coordinate system
|
|
:param bd_lng: Longitude in BD09 coordinate system
|
|
:param bd_lat: Latitude in BD09 coordinate system
|
|
:return: Converted longitude and latitude in GCJ02
|
|
'''
|
|
x = bd_lng - 0.0065
|
|
y = bd_lat - 0.006
|
|
z = np.sqrt(x * x + y * y) - 0.00002 * np.sin(y * self.x_pi)
|
|
theta = np.arctan2(y, x) - 0.000003 * np.cos(x * self.x_pi)
|
|
gcj_lng = z * np.cos(theta)
|
|
gcj_lat = z * np.sin(theta)
|
|
return gcj_lng, gcj_lat
|
|
|
|
|
|
def WGS84_to_GCJ02(self, lng, lat):
|
|
'''
|
|
Convert coordinates from WGS84 to GCJ02 coordinate system
|
|
:param lng: Longitude in WGS84 coordinate system
|
|
:param lat: Latitude in WGS84 coordinate system
|
|
:return: Converted longitude and latitude in GCJ02
|
|
'''
|
|
dlat = self._transformlat(lng - 105.0, lat - 35.0)
|
|
dlng = self._transformlng(lng - 105.0, lat - 35.0)
|
|
radlat = lat / 180.0 * self.pi
|
|
magic = np.sin(radlat)
|
|
magic = 1 - self.es * magic * magic
|
|
sqrtmagic = np.sqrt(magic)
|
|
dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi)
|
|
dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi)
|
|
gcj_lng = lng + dlng
|
|
gcj_lat = lat + dlat
|
|
return gcj_lng, gcj_lat
|
|
|
|
|
|
def GCJ02_to_WGS84(self, gcj_lng, gcj_lat):
|
|
'''
|
|
Convert coordinates from GCJ02 to WGS84 coordinate system
|
|
:param gcj_lng: Longitude in GCJ02 coordinate system
|
|
:param gcj_lat: Latitude in GCJ02 coordinate system
|
|
:return: Converted longitude and latitude in WGS84
|
|
'''
|
|
dlat = self._transformlat(gcj_lng - 105.0, gcj_lat - 35.0)
|
|
dlng = self._transformlng(gcj_lng - 105.0, gcj_lat - 35.0)
|
|
radlat = gcj_lat / 180.0 * self.pi
|
|
magic = np.sin(radlat)
|
|
magic = 1 - self.es * magic * magic
|
|
sqrtmagic = np.sqrt(magic)
|
|
dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi)
|
|
dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi)
|
|
mglat = gcj_lat + dlat
|
|
mglng = gcj_lng + dlng
|
|
lng = gcj_lng * 2 - mglng
|
|
lat = gcj_lat * 2 - mglat
|
|
return lng, lat
|
|
|
|
|
|
def BD09_to_WGS84(self, bd_lng, bd_lat):
|
|
'''
|
|
Convert coordinates from BD09 to WGS84 coordinate system
|
|
:param bd_lng: Longitude in BD09 coordinate system
|
|
:param bd_lat: Latitude in BD09 coordinate system
|
|
:return: Converted longitude and latitude in WGS84
|
|
'''
|
|
lng, lat = self.BD09_to_GCJ02(bd_lng, bd_lat)
|
|
return self.GCJ02_to_WGS84(lng, lat)
|
|
|
|
|
|
def WGS84_to_BD09(self, lng, lat):
|
|
'''
|
|
Convert coordinates from WGS84 to BD09 coordinate system
|
|
:param lng: Longitude in WGS84 coordinate system
|
|
:param lat: Latitude in WGS84 coordinate system
|
|
:return: Converted longitude and latitude in BD09
|
|
'''
|
|
lng, lat = self.WGS84_to_GCJ02(lng, lat)
|
|
return self.GCJ02_to_BD09(lng, lat)
|
|
|
|
|
|
def _transformlat(self, lng, lat):
|
|
ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
|
|
0.1 * lng * lat + 0.2 * np.sqrt(np.fabs(lng))
|
|
ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 *
|
|
np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0
|
|
ret += (20.0 * np.sin(lat * self.pi) + 40.0 *
|
|
np.sin(lat / 3.0 * self.pi)) * 2.0 / 3.0
|
|
ret += (160.0 * np.sin(lat / 12.0 * self.pi) + 320 *
|
|
np.sin(lat * self.pi / 30.0)) * 2.0 / 3.0
|
|
return ret
|
|
|
|
|
|
def _transformlng(self, lng, lat):
|
|
ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \
|
|
0.1 * lng * lat + 0.1 * np.sqrt(np.fabs(lng))
|
|
ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 *
|
|
np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0
|
|
ret += (20.0 * np.sin(lng * self.pi) + 40.0 *
|
|
np.sin(lng / 3.0 * self.pi)) * 2.0 / 3.0
|
|
ret += (150.0 * np.sin(lng / 12.0 * self.pi) + 300.0 *
|
|
np.sin(lng / 30.0 * self.pi)) * 2.0 / 3.0
|
|
return ret
|
|
|
|
def WGS84_to_WebMercator(self, lng, lat):
|
|
'''
|
|
Convert coordinates from WGS84 to Web Mercator
|
|
:param lng: Longitude in WGS84
|
|
:param lat: Latitude in WGS84
|
|
:return: Converted Web Mercator coordinates
|
|
'''
|
|
x = lng * 20037508.342789 / 180
|
|
y = np.log(np.tan((90 + lat) * self.pi / 360)) / (self.pi / 180)
|
|
y = y * 20037508.34789 / 180
|
|
return x, y
|
|
|
|
def WebMercator_to_WGS84(self, x, y):
|
|
'''
|
|
Convert coordinates from Web Mercator to WGS84
|
|
:param x: Web Mercator x coordinate
|
|
:param y: Web Mercator y coordinate
|
|
:return: Converted longitude and latitude in WGS84
|
|
'''
|
|
lng = x / 20037508.34 * 180
|
|
lat = y / 20037508.34 * 180
|
|
lat = 180 / self.pi * (2 * np.arctan(np.exp(lat * self.pi / 180)) - self.pi / 2)
|
|
return lng, lat
|
|
|
|
|
|
transfer = LngLatTransfer()
|
|
def get_tile_array(x, y, z, method='nearest', func_source=None, radius=2, fill_value=0, use_gc02=True):
|
|
"""Resample source image data to map tile
|
|
|
|
Args:
|
|
x, y, z: Tile coordinates
|
|
method: Resampling method ('nearest' or 'bilinear')
|
|
func_source: Function to get source image data
|
|
radius: Search radius in pixels
|
|
fill_value: Value for no data areas
|
|
gc02: Whether the coordinates are in GCJ02 system (True) or WGS84 (False)
|
|
|
|
Returns:
|
|
ndarray: Resampled tile data
|
|
"""
|
|
bounds = mercantile.bounds(x, y, z)
|
|
|
|
if use_gc02:
|
|
# Convert coordinates from GCJ02 to WGS84
|
|
wgs84_lngs, wgs84_lats = transfer.GCJ02_to_WGS84(
|
|
gcj_lng=np.array([bounds.west, bounds.west, bounds.east, bounds.east]),
|
|
gcj_lat=np.array([bounds.north, bounds.south, bounds.south, bounds.north])
|
|
)
|
|
boundary = list(zip(wgs84_lngs, wgs84_lats))
|
|
else:
|
|
boundary = list(zip(
|
|
[bounds.west, bounds.west, bounds.east, bounds.east],
|
|
[bounds.north, bounds.south, bounds.south, bounds.north]
|
|
))
|
|
|
|
source_data = func_source(boundary)
|
|
|
|
if source_data is None:
|
|
return None
|
|
|
|
arr_image, arr_lngs, arr_lats = source_data
|
|
|
|
if use_gc02:
|
|
gcj02_lngs, gcj02_lats = transfer.WGS84_to_GCJ02(arr_lngs, arr_lats)
|
|
else:
|
|
gcj02_lngs, gcj02_lats = arr_lngs, arr_lats
|
|
|
|
# Define source and target geometries
|
|
source_def = geometry.SwathDefinition(lons=gcj02_lngs, lats=gcj02_lats)
|
|
|
|
xy_bounds = mercantile.xy_bounds(x, y, z)
|
|
target_def = geometry.AreaDefinition(
|
|
'tile', 'tile', 'tile',
|
|
'EPSG:3857',
|
|
TILE_SIZE, TILE_SIZE,
|
|
(xy_bounds.left, xy_bounds.bottom, xy_bounds.right, xy_bounds.top)
|
|
)
|
|
|
|
# Resample
|
|
pixel_size = mercantile.CE / 2 ** z / TILE_SIZE
|
|
if method == 'nearest':
|
|
result = kd_tree.resample_nearest(
|
|
source_def, arr_image, target_def,
|
|
radius_of_influence=radius * pixel_size,
|
|
fill_value=fill_value
|
|
)
|
|
elif method == 'bilinear':
|
|
resampler = bilinear.NumpyBilinearResampler(
|
|
source_def, target_def,
|
|
radius_of_influence=radius * pixel_size,
|
|
neighbours=8
|
|
)
|
|
result = resampler.resample(arr_image).astype(arr_image.dtype)
|
|
else:
|
|
raise ValueError(f'Unknown resampling method: {method}')
|
|
|
|
return result
|
|
|