Files
SkySensePlusPlus/tools/pretraining_data_builder/rsi_process/tile_resample.py
esenke 01adcfdf60 init
2025-12-08 22:16:31 +08:00

231 lines
8.4 KiB
Python

import numpy as np
import mercantile
from pyresample import bilinear, kd_tree, geometry
TILE_SIZE = 256
class LngLatTransfer():
def __init__(self):
self.x_pi = 3.14159265358979324 * 3000.0 / 180.0
self.pi = np.pi # π
self.a = 6378245.0
self.es = 0.00669342162296594323
pass
def GCJ02_to_BD09(self, gcj_lng, gcj_lat):
"""
Convert coordinates from GCJ02 to BD09 coordinate system
:param lng: Longitude in GCJ02 coordinate system
:param lat: Latitude in GCJ02 coordinate system
:return: Converted longitude and latitude in BD09
"""
z = np.sqrt(gcj_lng * gcj_lng + gcj_lat * gcj_lat) + 0.00002 * np.sin(gcj_lat * self.x_pi)
theta = np.arctan2(gcj_lat, gcj_lng) + 0.000003 * np.cos(gcj_lng * self.x_pi)
bd_lng = z * np.cos(theta) + 0.0065
bd_lat = z * np.sin(theta) + 0.006
return bd_lng, bd_lat
def BD09_to_GCJ02(self, bd_lng, bd_lat):
'''
Convert coordinates from BD09 to GCJ02 coordinate system
:param bd_lng: Longitude in BD09 coordinate system
:param bd_lat: Latitude in BD09 coordinate system
:return: Converted longitude and latitude in GCJ02
'''
x = bd_lng - 0.0065
y = bd_lat - 0.006
z = np.sqrt(x * x + y * y) - 0.00002 * np.sin(y * self.x_pi)
theta = np.arctan2(y, x) - 0.000003 * np.cos(x * self.x_pi)
gcj_lng = z * np.cos(theta)
gcj_lat = z * np.sin(theta)
return gcj_lng, gcj_lat
def WGS84_to_GCJ02(self, lng, lat):
'''
Convert coordinates from WGS84 to GCJ02 coordinate system
:param lng: Longitude in WGS84 coordinate system
:param lat: Latitude in WGS84 coordinate system
:return: Converted longitude and latitude in GCJ02
'''
dlat = self._transformlat(lng - 105.0, lat - 35.0)
dlng = self._transformlng(lng - 105.0, lat - 35.0)
radlat = lat / 180.0 * self.pi
magic = np.sin(radlat)
magic = 1 - self.es * magic * magic
sqrtmagic = np.sqrt(magic)
dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi)
dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi)
gcj_lng = lng + dlng
gcj_lat = lat + dlat
return gcj_lng, gcj_lat
def GCJ02_to_WGS84(self, gcj_lng, gcj_lat):
'''
Convert coordinates from GCJ02 to WGS84 coordinate system
:param gcj_lng: Longitude in GCJ02 coordinate system
:param gcj_lat: Latitude in GCJ02 coordinate system
:return: Converted longitude and latitude in WGS84
'''
dlat = self._transformlat(gcj_lng - 105.0, gcj_lat - 35.0)
dlng = self._transformlng(gcj_lng - 105.0, gcj_lat - 35.0)
radlat = gcj_lat / 180.0 * self.pi
magic = np.sin(radlat)
magic = 1 - self.es * magic * magic
sqrtmagic = np.sqrt(magic)
dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi)
dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi)
mglat = gcj_lat + dlat
mglng = gcj_lng + dlng
lng = gcj_lng * 2 - mglng
lat = gcj_lat * 2 - mglat
return lng, lat
def BD09_to_WGS84(self, bd_lng, bd_lat):
'''
Convert coordinates from BD09 to WGS84 coordinate system
:param bd_lng: Longitude in BD09 coordinate system
:param bd_lat: Latitude in BD09 coordinate system
:return: Converted longitude and latitude in WGS84
'''
lng, lat = self.BD09_to_GCJ02(bd_lng, bd_lat)
return self.GCJ02_to_WGS84(lng, lat)
def WGS84_to_BD09(self, lng, lat):
'''
Convert coordinates from WGS84 to BD09 coordinate system
:param lng: Longitude in WGS84 coordinate system
:param lat: Latitude in WGS84 coordinate system
:return: Converted longitude and latitude in BD09
'''
lng, lat = self.WGS84_to_GCJ02(lng, lat)
return self.GCJ02_to_BD09(lng, lat)
def _transformlat(self, lng, lat):
ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
0.1 * lng * lat + 0.2 * np.sqrt(np.fabs(lng))
ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 *
np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0
ret += (20.0 * np.sin(lat * self.pi) + 40.0 *
np.sin(lat / 3.0 * self.pi)) * 2.0 / 3.0
ret += (160.0 * np.sin(lat / 12.0 * self.pi) + 320 *
np.sin(lat * self.pi / 30.0)) * 2.0 / 3.0
return ret
def _transformlng(self, lng, lat):
ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \
0.1 * lng * lat + 0.1 * np.sqrt(np.fabs(lng))
ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 *
np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0
ret += (20.0 * np.sin(lng * self.pi) + 40.0 *
np.sin(lng / 3.0 * self.pi)) * 2.0 / 3.0
ret += (150.0 * np.sin(lng / 12.0 * self.pi) + 300.0 *
np.sin(lng / 30.0 * self.pi)) * 2.0 / 3.0
return ret
def WGS84_to_WebMercator(self, lng, lat):
'''
Convert coordinates from WGS84 to Web Mercator
:param lng: Longitude in WGS84
:param lat: Latitude in WGS84
:return: Converted Web Mercator coordinates
'''
x = lng * 20037508.342789 / 180
y = np.log(np.tan((90 + lat) * self.pi / 360)) / (self.pi / 180)
y = y * 20037508.34789 / 180
return x, y
def WebMercator_to_WGS84(self, x, y):
'''
Convert coordinates from Web Mercator to WGS84
:param x: Web Mercator x coordinate
:param y: Web Mercator y coordinate
:return: Converted longitude and latitude in WGS84
'''
lng = x / 20037508.34 * 180
lat = y / 20037508.34 * 180
lat = 180 / self.pi * (2 * np.arctan(np.exp(lat * self.pi / 180)) - self.pi / 2)
return lng, lat
transfer = LngLatTransfer()
def get_tile_array(x, y, z, method='nearest', func_source=None, radius=2, fill_value=0, use_gc02=True):
"""Resample source image data to map tile
Args:
x, y, z: Tile coordinates
method: Resampling method ('nearest' or 'bilinear')
func_source: Function to get source image data
radius: Search radius in pixels
fill_value: Value for no data areas
gc02: Whether the coordinates are in GCJ02 system (True) or WGS84 (False)
Returns:
ndarray: Resampled tile data
"""
bounds = mercantile.bounds(x, y, z)
if use_gc02:
# Convert coordinates from GCJ02 to WGS84
wgs84_lngs, wgs84_lats = transfer.GCJ02_to_WGS84(
gcj_lng=np.array([bounds.west, bounds.west, bounds.east, bounds.east]),
gcj_lat=np.array([bounds.north, bounds.south, bounds.south, bounds.north])
)
boundary = list(zip(wgs84_lngs, wgs84_lats))
else:
boundary = list(zip(
[bounds.west, bounds.west, bounds.east, bounds.east],
[bounds.north, bounds.south, bounds.south, bounds.north]
))
source_data = func_source(boundary)
if source_data is None:
return None
arr_image, arr_lngs, arr_lats = source_data
if use_gc02:
gcj02_lngs, gcj02_lats = transfer.WGS84_to_GCJ02(arr_lngs, arr_lats)
else:
gcj02_lngs, gcj02_lats = arr_lngs, arr_lats
# Define source and target geometries
source_def = geometry.SwathDefinition(lons=gcj02_lngs, lats=gcj02_lats)
xy_bounds = mercantile.xy_bounds(x, y, z)
target_def = geometry.AreaDefinition(
'tile', 'tile', 'tile',
'EPSG:3857',
TILE_SIZE, TILE_SIZE,
(xy_bounds.left, xy_bounds.bottom, xy_bounds.right, xy_bounds.top)
)
# Resample
pixel_size = mercantile.CE / 2 ** z / TILE_SIZE
if method == 'nearest':
result = kd_tree.resample_nearest(
source_def, arr_image, target_def,
radius_of_influence=radius * pixel_size,
fill_value=fill_value
)
elif method == 'bilinear':
resampler = bilinear.NumpyBilinearResampler(
source_def, target_def,
radius_of_influence=radius * pixel_size,
neighbours=8
)
result = resampler.resample(arr_image).astype(arr_image.dtype)
else:
raise ValueError(f'Unknown resampling method: {method}')
return result