import numpy as np import mercantile from pyresample import bilinear, kd_tree, geometry TILE_SIZE = 256 class LngLatTransfer(): def __init__(self): self.x_pi = 3.14159265358979324 * 3000.0 / 180.0 self.pi = np.pi # π self.a = 6378245.0 self.es = 0.00669342162296594323 pass def GCJ02_to_BD09(self, gcj_lng, gcj_lat): """ Convert coordinates from GCJ02 to BD09 coordinate system :param lng: Longitude in GCJ02 coordinate system :param lat: Latitude in GCJ02 coordinate system :return: Converted longitude and latitude in BD09 """ z = np.sqrt(gcj_lng * gcj_lng + gcj_lat * gcj_lat) + 0.00002 * np.sin(gcj_lat * self.x_pi) theta = np.arctan2(gcj_lat, gcj_lng) + 0.000003 * np.cos(gcj_lng * self.x_pi) bd_lng = z * np.cos(theta) + 0.0065 bd_lat = z * np.sin(theta) + 0.006 return bd_lng, bd_lat def BD09_to_GCJ02(self, bd_lng, bd_lat): ''' Convert coordinates from BD09 to GCJ02 coordinate system :param bd_lng: Longitude in BD09 coordinate system :param bd_lat: Latitude in BD09 coordinate system :return: Converted longitude and latitude in GCJ02 ''' x = bd_lng - 0.0065 y = bd_lat - 0.006 z = np.sqrt(x * x + y * y) - 0.00002 * np.sin(y * self.x_pi) theta = np.arctan2(y, x) - 0.000003 * np.cos(x * self.x_pi) gcj_lng = z * np.cos(theta) gcj_lat = z * np.sin(theta) return gcj_lng, gcj_lat def WGS84_to_GCJ02(self, lng, lat): ''' Convert coordinates from WGS84 to GCJ02 coordinate system :param lng: Longitude in WGS84 coordinate system :param lat: Latitude in WGS84 coordinate system :return: Converted longitude and latitude in GCJ02 ''' dlat = self._transformlat(lng - 105.0, lat - 35.0) dlng = self._transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * self.pi magic = np.sin(radlat) magic = 1 - self.es * magic * magic sqrtmagic = np.sqrt(magic) dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi) dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi) gcj_lng = lng + dlng gcj_lat = lat + dlat return gcj_lng, gcj_lat def GCJ02_to_WGS84(self, gcj_lng, gcj_lat): ''' Convert coordinates from GCJ02 to WGS84 coordinate system :param gcj_lng: Longitude in GCJ02 coordinate system :param gcj_lat: Latitude in GCJ02 coordinate system :return: Converted longitude and latitude in WGS84 ''' dlat = self._transformlat(gcj_lng - 105.0, gcj_lat - 35.0) dlng = self._transformlng(gcj_lng - 105.0, gcj_lat - 35.0) radlat = gcj_lat / 180.0 * self.pi magic = np.sin(radlat) magic = 1 - self.es * magic * magic sqrtmagic = np.sqrt(magic) dlat = (dlat * 180.0) / ((self.a * (1 - self.es)) / (magic * sqrtmagic) * self.pi) dlng = (dlng * 180.0) / (self.a / sqrtmagic * np.cos(radlat) * self.pi) mglat = gcj_lat + dlat mglng = gcj_lng + dlng lng = gcj_lng * 2 - mglng lat = gcj_lat * 2 - mglat return lng, lat def BD09_to_WGS84(self, bd_lng, bd_lat): ''' Convert coordinates from BD09 to WGS84 coordinate system :param bd_lng: Longitude in BD09 coordinate system :param bd_lat: Latitude in BD09 coordinate system :return: Converted longitude and latitude in WGS84 ''' lng, lat = self.BD09_to_GCJ02(bd_lng, bd_lat) return self.GCJ02_to_WGS84(lng, lat) def WGS84_to_BD09(self, lng, lat): ''' Convert coordinates from WGS84 to BD09 coordinate system :param lng: Longitude in WGS84 coordinate system :param lat: Latitude in WGS84 coordinate system :return: Converted longitude and latitude in BD09 ''' lng, lat = self.WGS84_to_GCJ02(lng, lat) return self.GCJ02_to_BD09(lng, lat) def _transformlat(self, lng, lat): ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \ 0.1 * lng * lat + 0.2 * np.sqrt(np.fabs(lng)) ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 * np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0 ret += (20.0 * np.sin(lat * self.pi) + 40.0 * np.sin(lat / 3.0 * self.pi)) * 2.0 / 3.0 ret += (160.0 * np.sin(lat / 12.0 * self.pi) + 320 * np.sin(lat * self.pi / 30.0)) * 2.0 / 3.0 return ret def _transformlng(self, lng, lat): ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \ 0.1 * lng * lat + 0.1 * np.sqrt(np.fabs(lng)) ret += (20.0 * np.sin(6.0 * lng * self.pi) + 20.0 * np.sin(2.0 * lng * self.pi)) * 2.0 / 3.0 ret += (20.0 * np.sin(lng * self.pi) + 40.0 * np.sin(lng / 3.0 * self.pi)) * 2.0 / 3.0 ret += (150.0 * np.sin(lng / 12.0 * self.pi) + 300.0 * np.sin(lng / 30.0 * self.pi)) * 2.0 / 3.0 return ret def WGS84_to_WebMercator(self, lng, lat): ''' Convert coordinates from WGS84 to Web Mercator :param lng: Longitude in WGS84 :param lat: Latitude in WGS84 :return: Converted Web Mercator coordinates ''' x = lng * 20037508.342789 / 180 y = np.log(np.tan((90 + lat) * self.pi / 360)) / (self.pi / 180) y = y * 20037508.34789 / 180 return x, y def WebMercator_to_WGS84(self, x, y): ''' Convert coordinates from Web Mercator to WGS84 :param x: Web Mercator x coordinate :param y: Web Mercator y coordinate :return: Converted longitude and latitude in WGS84 ''' lng = x / 20037508.34 * 180 lat = y / 20037508.34 * 180 lat = 180 / self.pi * (2 * np.arctan(np.exp(lat * self.pi / 180)) - self.pi / 2) return lng, lat transfer = LngLatTransfer() def get_tile_array(x, y, z, method='nearest', func_source=None, radius=2, fill_value=0, use_gc02=True): """Resample source image data to map tile Args: x, y, z: Tile coordinates method: Resampling method ('nearest' or 'bilinear') func_source: Function to get source image data radius: Search radius in pixels fill_value: Value for no data areas gc02: Whether the coordinates are in GCJ02 system (True) or WGS84 (False) Returns: ndarray: Resampled tile data """ bounds = mercantile.bounds(x, y, z) if use_gc02: # Convert coordinates from GCJ02 to WGS84 wgs84_lngs, wgs84_lats = transfer.GCJ02_to_WGS84( gcj_lng=np.array([bounds.west, bounds.west, bounds.east, bounds.east]), gcj_lat=np.array([bounds.north, bounds.south, bounds.south, bounds.north]) ) boundary = list(zip(wgs84_lngs, wgs84_lats)) else: boundary = list(zip( [bounds.west, bounds.west, bounds.east, bounds.east], [bounds.north, bounds.south, bounds.south, bounds.north] )) source_data = func_source(boundary) if source_data is None: return None arr_image, arr_lngs, arr_lats = source_data if use_gc02: gcj02_lngs, gcj02_lats = transfer.WGS84_to_GCJ02(arr_lngs, arr_lats) else: gcj02_lngs, gcj02_lats = arr_lngs, arr_lats # Define source and target geometries source_def = geometry.SwathDefinition(lons=gcj02_lngs, lats=gcj02_lats) xy_bounds = mercantile.xy_bounds(x, y, z) target_def = geometry.AreaDefinition( 'tile', 'tile', 'tile', 'EPSG:3857', TILE_SIZE, TILE_SIZE, (xy_bounds.left, xy_bounds.bottom, xy_bounds.right, xy_bounds.top) ) # Resample pixel_size = mercantile.CE / 2 ** z / TILE_SIZE if method == 'nearest': result = kd_tree.resample_nearest( source_def, arr_image, target_def, radius_of_influence=radius * pixel_size, fill_value=fill_value ) elif method == 'bilinear': resampler = bilinear.NumpyBilinearResampler( source_def, target_def, radius_of_influence=radius * pixel_size, neighbours=8 ) result = resampler.resample(arr_image).astype(arr_image.dtype) else: raise ValueError(f'Unknown resampling method: {method}') return result