414 lines
11 KiB
Python
414 lines
11 KiB
Python
crop_size = (
|
|
24,
|
|
24,
|
|
)
|
|
data_preprocessor = dict(
|
|
bgr_to_rgb=False,
|
|
mean=[
|
|
2482.0061841829206,
|
|
2456.642580060208,
|
|
2667.8229979675334,
|
|
2744.9377076257624,
|
|
3620.1499158373827,
|
|
4063.9126981046647,
|
|
3922.2406108776354,
|
|
4264.908986788407,
|
|
2453.0070206816135,
|
|
1774.0019119673998,
|
|
],
|
|
pad_val=0,
|
|
seg_pad_val=255,
|
|
size=(
|
|
24,
|
|
24,
|
|
),
|
|
std=[
|
|
2392.1256366526068,
|
|
2100.1364646122875,
|
|
2262.6154840764625,
|
|
2353.899770400333,
|
|
2089.598452203458,
|
|
2057.1247114077073,
|
|
2013.2108514271458,
|
|
2041.0248949410561,
|
|
1380.4643757742374,
|
|
1243.547946113518,
|
|
],
|
|
ts_size=30,
|
|
type='RSTsSegDataPreProcessor')
|
|
data_root = 'rs_datasets/'
|
|
dataset_type = 'GermanyCropDataset'
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
by_epoch=False,
|
|
interval=2000,
|
|
max_keep_ckpts=1,
|
|
save_best='mIoU',
|
|
type='CheckpointHook'),
|
|
logger=dict(interval=20, log_metric_by_epoch=False, type='LoggerHook'),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
timer=dict(type='IterTimerHook'),
|
|
visualization=dict(type='SegVisualizationHook'))
|
|
default_scope = 'mmseg'
|
|
env_cfg = dict(
|
|
cudnn_benchmark=True,
|
|
dist_cfg=dict(backend='nccl'),
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
|
find_unused_parameters = True
|
|
img_ratios = [
|
|
0.5,
|
|
0.75,
|
|
1.0,
|
|
1.25,
|
|
1.5,
|
|
1.75,
|
|
]
|
|
launcher = 'pytorch'
|
|
load_from = None
|
|
log_level = 'INFO'
|
|
log_processor = dict(by_epoch=False)
|
|
mean = [
|
|
2482.0061841829206,
|
|
2456.642580060208,
|
|
2667.8229979675334,
|
|
2744.9377076257624,
|
|
3620.1499158373827,
|
|
4063.9126981046647,
|
|
3922.2406108776354,
|
|
4264.908986788407,
|
|
2453.0070206816135,
|
|
1774.0019119673998,
|
|
]
|
|
model = dict(
|
|
auxiliary_head=dict(
|
|
align_corners=False,
|
|
channels=256,
|
|
concat_input=False,
|
|
dropout_ratio=0.1,
|
|
in_channels=1024,
|
|
in_index=3,
|
|
loss_decode=dict(
|
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=18,
|
|
num_convs=1,
|
|
type='FCNHead'),
|
|
backbone=dict(
|
|
act_cfg=dict(type='GELU'),
|
|
attn_drop_rate=0.0,
|
|
downscale_indices=[
|
|
-1,
|
|
],
|
|
drop_path_rate=0.0,
|
|
drop_rate=0.1,
|
|
embed_dims=1024,
|
|
img_size=(
|
|
24,
|
|
24,
|
|
),
|
|
in_channels=10,
|
|
init_cfg=dict(
|
|
checkpoint=
|
|
'pretrain/skysensepp_mmcvt_s2.pth',
|
|
type='Pretrained'),
|
|
interpolate_mode='bilinear',
|
|
mlp_ratio=4,
|
|
norm_cfg=dict(eps=1e-06, requires_grad=True, type='LN'),
|
|
norm_eval=False,
|
|
num_heads=16,
|
|
num_layers=24,
|
|
out_indices=(
|
|
5,
|
|
11,
|
|
17,
|
|
23,
|
|
),
|
|
patch_size=4,
|
|
qkv_bias=True,
|
|
type='VisionTransformer',
|
|
with_cls_token=False),
|
|
data_preprocessor=dict(
|
|
bgr_to_rgb=False,
|
|
mean=[
|
|
2482.0061841829206,
|
|
2456.642580060208,
|
|
2667.8229979675334,
|
|
2744.9377076257624,
|
|
3620.1499158373827,
|
|
4063.9126981046647,
|
|
3922.2406108776354,
|
|
4264.908986788407,
|
|
2453.0070206816135,
|
|
1774.0019119673998,
|
|
],
|
|
pad_val=0,
|
|
seg_pad_val=255,
|
|
size=(
|
|
24,
|
|
24,
|
|
),
|
|
std=[
|
|
2392.1256366526068,
|
|
2100.1364646122875,
|
|
2262.6154840764625,
|
|
2353.899770400333,
|
|
2089.598452203458,
|
|
2057.1247114077073,
|
|
2013.2108514271458,
|
|
2041.0248949410561,
|
|
1380.4643757742374,
|
|
1243.547946113518,
|
|
],
|
|
ts_size=30,
|
|
type='RSTsSegDataPreProcessor'),
|
|
decode_head=dict(
|
|
align_corners=False,
|
|
channels=512,
|
|
dropout_ratio=0.1,
|
|
in_channels=[
|
|
1024,
|
|
1024,
|
|
1024,
|
|
1024,
|
|
],
|
|
in_index=[
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
],
|
|
loss_decode=dict(
|
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=18,
|
|
pool_scales=(
|
|
1,
|
|
2,
|
|
3,
|
|
6,
|
|
),
|
|
type='UPerHead'),
|
|
neck=dict(
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.3,
|
|
drop_rate=0.0,
|
|
embed_dims=1024,
|
|
in_channels=[
|
|
768,
|
|
768,
|
|
768,
|
|
768,
|
|
],
|
|
in_channels_ml=[
|
|
1024,
|
|
1024,
|
|
1024,
|
|
1024,
|
|
],
|
|
init_cfg=dict(
|
|
checkpoint=
|
|
'pretrain/skysensepp_mmcvt_fusion.pth',
|
|
type='Pretrained'),
|
|
input_dims=1024,
|
|
mlp_ratio=4,
|
|
num_heads=16,
|
|
num_layers=24,
|
|
out_channels=768,
|
|
out_channels_ml=1024,
|
|
output_cls_token=True,
|
|
qkv_bias=True,
|
|
scales=[
|
|
4,
|
|
2,
|
|
1,
|
|
0.5,
|
|
],
|
|
scales_ml=[
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
],
|
|
ts_size=30,
|
|
type='FusionMultiLevelNeck',
|
|
with_cls_token=True),
|
|
test_cfg=dict(mode='whole'),
|
|
train_cfg=dict(),
|
|
type='EncoderDecoder')
|
|
norm_cfg = dict(requires_grad=True, type='SyncBN')
|
|
optim_wrapper = dict(
|
|
optimizer=dict(
|
|
betas=(
|
|
0.9,
|
|
0.999,
|
|
), lr=0.0001, type='AdamW', weight_decay=0.01),
|
|
paramwise_cfg=dict(
|
|
custom_keys=dict(
|
|
cls_token=dict(decay_mult=0.0),
|
|
norm=dict(decay_mult=0.0),
|
|
pos_embed=dict(decay_mult=0.0))),
|
|
type='OptimWrapper')
|
|
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
|
param_scheduler = [
|
|
dict(
|
|
begin=0, by_epoch=False, end=2000, start_factor=1e-06,
|
|
type='LinearLR'),
|
|
dict(
|
|
begin=2000,
|
|
by_epoch=False,
|
|
end=20000,
|
|
eta_min=0.0,
|
|
power=1.0,
|
|
type='PolyLR'),
|
|
]
|
|
randomness = dict(seed=20240311)
|
|
resume = False
|
|
static_graph = True
|
|
std = [
|
|
2392.1256366526068,
|
|
2100.1364646122875,
|
|
2262.6154840764625,
|
|
2353.899770400333,
|
|
2089.598452203458,
|
|
2057.1247114077073,
|
|
2013.2108514271458,
|
|
2041.0248949410561,
|
|
1380.4643757742374,
|
|
1243.547946113518,
|
|
]
|
|
test_cfg = dict(type='TestLoop')
|
|
test_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/germany_crop/germany_crop_val.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', ts_size=30, type='LoadTsImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=True,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='GermanyCropDataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
test_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
'mFscore',
|
|
], type='IoUMetric')
|
|
test_pipeline = [
|
|
dict(data_key='image', ts_size=30, type='LoadTsImageFromNpz'),
|
|
dict(data_key='image', reduce_zero_label=True, type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
]
|
|
train_cfg = dict(
|
|
dynamic_intervals=[
|
|
(
|
|
0,
|
|
1000,
|
|
),
|
|
(
|
|
4000,
|
|
2000,
|
|
),
|
|
(
|
|
8000,
|
|
4000,
|
|
),
|
|
],
|
|
max_iters=20000,
|
|
type='IterBasedTrainLoop',
|
|
val_interval=2000)
|
|
train_dataloader = dict(
|
|
batch_size=2,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/germany_crop/germany_crop_train.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', ts_size=30, type='LoadTsImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=True,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='GermanyCropDataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
|
train_pipeline = [
|
|
dict(data_key='image', ts_size=30, type='LoadTsImageFromNpz'),
|
|
dict(data_key='image', reduce_zero_label=True, type='LoadAnnotationsNpz'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PackSegInputs'),
|
|
]
|
|
tta_model = dict(type='SegTTAModel')
|
|
tta_pipeline = [
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(
|
|
transforms=[
|
|
[
|
|
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
|
],
|
|
[
|
|
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
|
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
|
],
|
|
[
|
|
dict(type='LoadAnnotations'),
|
|
],
|
|
[
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
],
|
|
type='TestTimeAug'),
|
|
]
|
|
val_cfg = dict(type='ValLoop')
|
|
val_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/germany_crop/germany_crop_val.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', ts_size=30, type='LoadTsImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=True,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='GermanyCropDataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
val_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
'mFscore',
|
|
], type='IoUMetric')
|
|
vis_backends = [
|
|
dict(type='LocalVisBackend'),
|
|
]
|
|
visualizer = dict(
|
|
name='visualizer',
|
|
type='SegLocalVisualizer',
|
|
vis_backends=[
|
|
dict(type='LocalVisBackend'),
|
|
])
|
|
work_dir = 'save_germany' |