This commit is contained in:
esenke
2025-12-08 21:38:53 +08:00
commit 71118fc649
22 changed files with 4780 additions and 0 deletions

145
utils/utils_fit.py Normal file
View File

@@ -0,0 +1,145 @@
import os
import torch
from tqdm import tqdm
from utils.utils import get_lr
import pdb
def fit_one_epoch(model_train, model, ema, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
loss = 0
val_loss = 0
epoch_step = epoch_step // 5 # 每次epoch只随机用训练集合的一部分 防止过拟合
if local_rank == 0:
print('Start Train')
pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
#pdb.set_trace()
model_train.train()
for iteration, batch in enumerate(gen):
if iteration >= epoch_step:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = [ann.cuda(local_rank) for ann in targets]
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
if not fp16:
#----------------------#
# 前向传播
#----------------------#
#pdb.set_trace()
outputs = model_train(images)
#----------------------#
# 计算损失
#----------------------#
loss_value = yolo_loss(outputs, targets) #+ motion_loss
#----------------------#
# 反向传播
#----------------------#
# torch.autograd.set_detect_anomaly(True)
# with torch.autograd.detect_anomaly():
loss_value.backward()
optimizer.step()
else:
from torch.cuda.amp import autocast
with autocast():
outputs = model_train(images)
#----------------------#
# 计算损失
#----------------------#
loss_value = yolo_loss(outputs, targets)
#----------------------#
# 反向传播
#----------------------#
scaler.scale(loss_value).backward()
scaler.step(optimizer)
scaler.update()
#pdb.set_trace()
if ema:
ema.update(model_train)
loss += loss_value.item()
if local_rank == 0:
pbar.set_postfix(**{'loss' : loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Train')
print('Start Validation')
pbar = tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
if ema:
model_train_eval = ema.ema
else:
model_train_eval = model_train.eval()
for iteration, batch in enumerate(gen_val):
if iteration >= epoch_step_val:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = [ann.cuda(local_rank) for ann in targets]
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
#----------------------#
# 前向传播
#----------------------#
outputs = model_train_eval(images)
#----------------------#
# 计算损失
#----------------------#
loss_value = yolo_loss(outputs, targets)
val_loss += loss_value.item()
if local_rank == 0:
pbar.set_postfix(**{'val_loss': val_loss / (iteration + 1)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Validation')
loss_history.append_loss(epoch + 1, loss / epoch_step, val_loss / epoch_step_val)
eval_callback.on_epoch_end(epoch + 1, model_train_eval)
print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
print('Total Loss: %.3f || Val Loss: %.3f ' % (loss / epoch_step, val_loss / epoch_step_val))
#-----------------------------------------------#
# 保存权值
#-----------------------------------------------#
if ema:
save_state_dict = ema.ema.state_dict()
else:
save_state_dict = model.state_dict()
if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
torch.save(save_state_dict, os.path.join(save_dir, "ep%03d-loss%.3f-val_loss%.3f.pth" % (epoch + 1, loss / epoch_step, val_loss / epoch_step_val)))
if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
print('Save best model to best_epoch_weights.pth')
torch.save(save_state_dict, os.path.join(save_dir, "best_epoch_weights.pth"))
torch.save(save_state_dict, os.path.join(save_dir, "last_epoch_weights.pth"))