183 lines
5.6 KiB
Python
183 lines
5.6 KiB
Python
import os
|
|
import uuid
|
|
import numpy as np
|
|
import pyproj as prj
|
|
from osgeo import gdal
|
|
from time import time
|
|
import mercantile
|
|
from PIL import Image
|
|
import imageio.v2 as iio
|
|
from tile_resample import (
|
|
get_tile_array,
|
|
transfer
|
|
)
|
|
import argparse
|
|
from rich import print
|
|
from rich.progress import track
|
|
|
|
def get_args_parser():
|
|
parser = argparse.ArgumentParser(description='WorldView to tiles')
|
|
parser.add_argument('--fn_img', help='input file of WorldView image')
|
|
parser.add_argument('--save_dir', default='output_wv/', help='output directory')
|
|
parser.add_argument('--zoom', type=int, default=16, help='zoom level')
|
|
parser.add_argument('--verbose', action='store_true', default=True)
|
|
parser.add_argument('--use_gcj02', action='store_true', default=False)
|
|
return parser.parse_args()
|
|
|
|
def get_image_by_approximate_boundary(ds_list, boundary, tr, buf=1):
|
|
'''Get image data within a specified boundary
|
|
|
|
Args:
|
|
ds_list: List of GDAL datasets
|
|
boundary: List of (lng, lat) coordinates
|
|
tr: Geotransformation parameters
|
|
buf: Buffer size
|
|
'''
|
|
arr_lnglat = np.array(boundary)
|
|
tr_from_4326 = prj.Transformer.from_crs(4326, ds_list[0].GetProjection(), always_xy=True)
|
|
|
|
xx, yy = tr_from_4326.transform(arr_lnglat[:, 0], arr_lnglat[:, 1])
|
|
|
|
nx = ds_list[0].RasterXSize
|
|
ny = ds_list[0].RasterYSize
|
|
xres = tr[1]
|
|
yres = -tr[5]
|
|
|
|
row_min = int((tr[3] - yy.max()) / yres)
|
|
row_max = int((tr[3] - yy.min()) / yres)
|
|
col_min = int((xx.min() - tr[0]) / xres)
|
|
col_max = int((xx.max() - tr[0]) / xres)
|
|
|
|
row_min = max(0, row_min - buf)
|
|
row_max = min(ny - 1, row_max + buf)
|
|
col_min = max(0, col_min - buf)
|
|
col_max = min(nx - 1, col_max + buf)
|
|
|
|
if row_min > row_max or col_min > col_max:
|
|
return None
|
|
|
|
arr_image = np.stack([
|
|
ds.ReadAsArray(col_min, row_min, col_max - col_min + 1, row_max - row_min + 1)
|
|
for ds in ds_list
|
|
])
|
|
|
|
if np.all(arr_image == 0):
|
|
return None
|
|
|
|
arr_image = arr_image.transpose((1, 2, 0))
|
|
|
|
arr_xx = tr[0] + np.arange(col_min, col_max + 1) * xres
|
|
arr_yy = tr[3] - np.arange(row_min, row_max + 1) * yres
|
|
arr_xx, arr_yy = np.meshgrid(arr_xx, arr_yy)
|
|
|
|
tr_to_4326 = prj.Transformer.from_crs(ds_list[0].GetProjection(), 4326, always_xy=True)
|
|
arr_lngs, arr_lats = tr_to_4326.transform(arr_xx, arr_yy)
|
|
|
|
return arr_image, arr_lngs, arr_lats
|
|
|
|
def process_wv(args):
|
|
t_start = time()
|
|
|
|
fn_img = args.fn_img
|
|
save_dir = args.save_dir
|
|
z = args.zoom
|
|
verbose = args.verbose
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
ds = gdal.Open(fn_img)
|
|
if ds is None:
|
|
raise Exception(f"Cannot open {fn_img}")
|
|
|
|
bands = [ds.GetRasterBand(i+1) for i in range(ds.RasterCount)]
|
|
list_arr = [ds]
|
|
|
|
nx, ny = ds.RasterXSize, ds.RasterYSize
|
|
tr = ds.GetGeoTransform()
|
|
|
|
if verbose:
|
|
print('Input size:', nx, ny)
|
|
print(gdal.Info(ds, format='json'))
|
|
|
|
# Calculate the image range
|
|
size_pixel = mercantile.CE / 2 ** z / 256
|
|
radius = np.ceil(max(tr[1], -tr[5]) / size_pixel * 1.5)
|
|
|
|
buf_ext = 1
|
|
xmin = tr[0] - buf_ext * tr[1]
|
|
ymin = tr[3] + (ny + buf_ext) * tr[5]
|
|
xmax = tr[0] + (nx + buf_ext) * tr[1]
|
|
ymax = tr[3] - buf_ext * tr[5]
|
|
|
|
tr_to_4326 = prj.Transformer.from_crs(ds.GetProjection(), 4326, always_xy=True)
|
|
arr_lng, arr_lat = tr_to_4326.transform(
|
|
np.array([xmin, xmin, xmax, xmax]),
|
|
np.array([ymax, ymin, ymin, ymax])
|
|
)
|
|
|
|
if args.use_gcj02:
|
|
arr_lng_final, arr_lat_final = transfer.WGS84_to_GCJ02(arr_lng, arr_lat)
|
|
else:
|
|
arr_lng_final, arr_lat_final = arr_lng, arr_lat
|
|
|
|
box = (
|
|
arr_lng_final.min(),
|
|
arr_lat_final.min(),
|
|
arr_lng_final.max(),
|
|
arr_lat_final.max()
|
|
)
|
|
|
|
if verbose:
|
|
coord_system = "GCJ02" if args.use_gcj02 else "WGS84"
|
|
print(f'Input extent, {coord_system}: {box}')
|
|
|
|
# Calculate the tile range to be processed
|
|
tile_ul = mercantile.tile(box[0], box[3], z)
|
|
tile_lr = mercantile.tile(box[2], box[1], z)
|
|
|
|
if verbose:
|
|
print('Upperleft ', str(tile_ul))
|
|
print('Lowerright ', str(tile_lr))
|
|
|
|
def work(x, y, z):
|
|
arr_tile = get_tile_array(
|
|
x, y, z,
|
|
method='nearest',
|
|
func_source=lambda boundary: get_image_by_approximate_boundary(list_arr, boundary, tr),
|
|
radius=radius,
|
|
use_gc02=args.use_gcj02
|
|
)
|
|
|
|
if arr_tile is not None:
|
|
save_path = os.path.join(save_dir, str(z), str(x))
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
# Save as PNG
|
|
if arr_tile.shape[2] >= 3:
|
|
arr_rgb = arr_tile[:, :, :3]
|
|
arr_rgb = np.clip(arr_rgb / 2000. * 255, 0, 255).astype(np.uint8)
|
|
image_tile = Image.fromarray(arr_rgb)
|
|
png_filename = os.path.join(save_path, f'{y}.png')
|
|
image_tile.save(png_filename, format='png')
|
|
|
|
# Save as NPZ
|
|
dict_arr = {f'B{i+1}': arr_tile[:, :, i] for i in range(arr_tile.shape[2])}
|
|
npz_filename = os.path.join(save_path, f'{y}.npz')
|
|
np.savez_compressed(npz_filename, **dict_arr)
|
|
|
|
tasks = [
|
|
(x, y) for x in range(tile_ul.x, tile_lr.x + 1)
|
|
for y in range(tile_ul.y, tile_lr.y + 1)
|
|
]
|
|
|
|
for x, y in track(tasks, description="Converting tiles..."):
|
|
work(x, y, z)
|
|
|
|
print("Time cost:", time() - t_start)
|
|
|
|
def main():
|
|
args = get_args_parser()
|
|
process_wv(args)
|
|
|
|
if __name__ == '__main__':
|
|
main() |