221 lines
9.5 KiB
Python
221 lines
9.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
|
|
import mmengine
|
|
import torch
|
|
from mmengine.runner import CheckpointLoader
|
|
|
|
|
|
def convert_key_name(ckpt):
|
|
new_ckpt = OrderedDict()
|
|
|
|
for k, v in ckpt.items():
|
|
key_list = k.split('.')
|
|
if key_list[0] == 'clip_visual_extractor':
|
|
new_transform_name = 'image_encoder'
|
|
if key_list[1] == 'class_embedding':
|
|
new_name = '.'.join([new_transform_name, 'cls_token'])
|
|
elif key_list[1] == 'positional_embedding':
|
|
new_name = '.'.join([new_transform_name, 'pos_embed'])
|
|
elif key_list[1] == 'conv1':
|
|
new_name = '.'.join([
|
|
new_transform_name, 'patch_embed.projection', key_list[2]
|
|
])
|
|
elif key_list[1] == 'ln_pre':
|
|
new_name = '.'.join(
|
|
[new_transform_name, key_list[1], key_list[2]])
|
|
elif key_list[1] == 'resblocks':
|
|
new_layer_name = 'layers'
|
|
layer_index = key_list[2]
|
|
paras = key_list[3:]
|
|
if paras[0] == 'ln_1':
|
|
new_para_name = '.'.join(['ln1'] + key_list[4:])
|
|
elif paras[0] == 'attn':
|
|
new_para_name = '.'.join(['attn.attn'] + key_list[4:])
|
|
elif paras[0] == 'ln_2':
|
|
new_para_name = '.'.join(['ln2'] + key_list[4:])
|
|
elif paras[0] == 'mlp':
|
|
if paras[1] == 'c_fc':
|
|
new_para_name = '.'.join(['ffn.layers.0.0'] +
|
|
key_list[-1:])
|
|
else:
|
|
new_para_name = '.'.join(['ffn.layers.1'] +
|
|
key_list[-1:])
|
|
new_name = '.'.join([
|
|
new_transform_name, new_layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
elif key_list[0] == 'side_adapter_network':
|
|
decode_head_name = 'decode_head'
|
|
module_name = 'side_adapter_network'
|
|
if key_list[1] == 'vit_model':
|
|
if key_list[2] == 'blocks':
|
|
layer_name = 'encode_layers'
|
|
layer_index = key_list[3]
|
|
paras = key_list[4:]
|
|
if paras[0] == 'norm1':
|
|
new_para_name = '.'.join(['ln1'] + key_list[5:])
|
|
elif paras[0] == 'attn':
|
|
new_para_name = '.'.join(key_list[4:])
|
|
new_para_name = new_para_name.replace(
|
|
'attn.qkv.', 'attn.attn.in_proj_')
|
|
new_para_name = new_para_name.replace(
|
|
'attn.proj', 'attn.attn.out_proj')
|
|
elif paras[0] == 'norm2':
|
|
new_para_name = '.'.join(['ln2'] + key_list[5:])
|
|
elif paras[0] == 'mlp':
|
|
new_para_name = '.'.join(['ffn'] + key_list[5:])
|
|
new_para_name = new_para_name.replace(
|
|
'fc1', 'layers.0.0')
|
|
new_para_name = new_para_name.replace(
|
|
'fc2', 'layers.1')
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
new_name = '.'.join([
|
|
decode_head_name, module_name, layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
elif key_list[2] == 'pos_embed':
|
|
new_name = '.'.join(
|
|
[decode_head_name, module_name, 'pos_embed'])
|
|
elif key_list[2] == 'patch_embed':
|
|
new_name = '.'.join([
|
|
decode_head_name, module_name, 'patch_embed',
|
|
'projection', key_list[4]
|
|
])
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
elif key_list[1] == 'query_embed' or key_list[
|
|
1] == 'query_pos_embed':
|
|
new_name = '.'.join(
|
|
[decode_head_name, module_name, key_list[1]])
|
|
elif key_list[1] == 'fusion_layers':
|
|
layer_name = 'conv_clips'
|
|
layer_index = key_list[2][-1]
|
|
paras = '.'.join(key_list[3:])
|
|
new_para_name = paras.replace('input_proj.0', '0')
|
|
new_para_name = new_para_name.replace('input_proj.1', '1.conv')
|
|
new_name = '.'.join([
|
|
decode_head_name, module_name, layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
elif key_list[1] == 'mask_decoder':
|
|
new_name = 'decode_head.' + k
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
elif key_list[0] == 'clip_rec_head':
|
|
module_name = 'rec_with_attnbias'
|
|
if key_list[1] == 'proj':
|
|
new_name = '.'.join(
|
|
[decode_head_name, module_name, 'proj.weight'])
|
|
elif key_list[1] == 'ln_post':
|
|
new_name = '.'.join(
|
|
[decode_head_name, module_name, 'ln_post', key_list[2]])
|
|
elif key_list[1] == 'resblocks':
|
|
new_layer_name = 'layers'
|
|
layer_index = key_list[2]
|
|
paras = key_list[3:]
|
|
if paras[0] == 'ln_1':
|
|
new_para_name = '.'.join(['norms.0'] + paras[1:])
|
|
elif paras[0] == 'attn':
|
|
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
|
|
elif paras[0] == 'ln_2':
|
|
new_para_name = '.'.join(['norms.1'] + paras[1:])
|
|
elif paras[0] == 'mlp':
|
|
if paras[1] == 'c_fc':
|
|
new_para_name = '.'.join(['ffns.0.layers.0.0'] +
|
|
paras[2:])
|
|
elif paras[1] == 'c_proj':
|
|
new_para_name = '.'.join(['ffns.0.layers.1'] +
|
|
paras[2:])
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
new_name = '.'.join([
|
|
decode_head_name, module_name, new_layer_name, layer_index,
|
|
new_para_name
|
|
])
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
elif key_list[0] == 'ov_classifier':
|
|
text_encoder_name = 'text_encoder'
|
|
if key_list[1] == 'transformer':
|
|
layer_name = 'transformer'
|
|
layer_index = key_list[3]
|
|
paras = key_list[4:]
|
|
if paras[0] == 'attn':
|
|
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
|
|
elif paras[0] == 'ln_1':
|
|
new_para_name = '.'.join(['norms.0'] + paras[1:])
|
|
elif paras[0] == 'ln_2':
|
|
new_para_name = '.'.join(['norms.1'] + paras[1:])
|
|
elif paras[0] == 'mlp':
|
|
if paras[1] == 'c_fc':
|
|
new_para_name = '.'.join(['ffns.0.layers.0.0'] +
|
|
paras[2:])
|
|
elif paras[1] == 'c_proj':
|
|
new_para_name = '.'.join(['ffns.0.layers.1'] +
|
|
paras[2:])
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
new_name = '.'.join([
|
|
text_encoder_name, layer_name, layer_index, new_para_name
|
|
])
|
|
elif key_list[1] in [
|
|
'positional_embedding', 'text_projection', 'bg_embed',
|
|
'attn_mask', 'logit_scale', 'token_embedding', 'ln_final'
|
|
]:
|
|
new_name = k.replace('ov_classifier', 'text_encoder')
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
elif key_list[0] == 'criterion':
|
|
new_name = k
|
|
else:
|
|
print(f'Wrong for {k}')
|
|
new_ckpt[new_name] = v
|
|
return new_ckpt
|
|
|
|
|
|
def convert_tensor(ckpt):
|
|
cls_token = ckpt['image_encoder.cls_token']
|
|
new_cls_token = cls_token.unsqueeze(0).unsqueeze(0)
|
|
ckpt['image_encoder.cls_token'] = new_cls_token
|
|
pos_embed = ckpt['image_encoder.pos_embed']
|
|
new_pos_embed = pos_embed.unsqueeze(0)
|
|
ckpt['image_encoder.pos_embed'] = new_pos_embed
|
|
proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight']
|
|
new_proj_weight = proj_weight.transpose(1, 0)
|
|
ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight
|
|
return ckpt
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys in timm pretrained vit models to '
|
|
'MMSegmentation style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
if 'state_dict' in checkpoint:
|
|
# timm checkpoint
|
|
state_dict = checkpoint['state_dict']
|
|
elif 'model' in checkpoint:
|
|
# deit checkpoint
|
|
state_dict = checkpoint['model']
|
|
else:
|
|
state_dict = checkpoint
|
|
weight = convert_key_name(state_dict)
|
|
weight = convert_tensor(weight)
|
|
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(weight, args.dst)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|