161 lines
5.6 KiB
Python
161 lines
5.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
"""Modified from https://github.com/JunMa11/SegWithDistMap/blob/
|
|
master/code/train_LA_HD.py (Apache-2.0 License)"""
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from scipy.ndimage import distance_transform_edt as distance
|
|
from torch import Tensor
|
|
|
|
from mmseg.registry import MODELS
|
|
from .utils import get_class_weight, weighted_loss
|
|
|
|
|
|
def compute_dtm(img_gt: Tensor, pred: Tensor) -> Tensor:
|
|
"""
|
|
compute the distance transform map of foreground in mask
|
|
Args:
|
|
img_gt: Ground truth of the image, (b, h, w)
|
|
pred: Predictions of the segmentation head after softmax, (b, c, h, w)
|
|
|
|
Returns:
|
|
output: the foreground Distance Map (SDM)
|
|
dtm(x) = 0; x in segmentation boundary
|
|
inf|x-y|; x in segmentation
|
|
"""
|
|
|
|
fg_dtm = torch.zeros_like(pred)
|
|
out_shape = pred.shape
|
|
for b in range(out_shape[0]): # batch size
|
|
for c in range(1, out_shape[1]): # default 0 channel is background
|
|
posmask = img_gt[b].byte()
|
|
if posmask.any():
|
|
posdis = distance(posmask)
|
|
fg_dtm[b][c] = torch.from_numpy(posdis)
|
|
|
|
return fg_dtm
|
|
|
|
|
|
@weighted_loss
|
|
def hd_loss(seg_soft: Tensor,
|
|
gt: Tensor,
|
|
seg_dtm: Tensor,
|
|
gt_dtm: Tensor,
|
|
class_weight=None,
|
|
ignore_index=255) -> Tensor:
|
|
"""
|
|
compute huasdorff distance loss for segmentation
|
|
Args:
|
|
seg_soft: softmax results, shape=(b,c,x,y)
|
|
gt: ground truth, shape=(b,x,y)
|
|
seg_dtm: segmentation distance transform map, shape=(b,c,x,y)
|
|
gt_dtm: ground truth distance transform map, shape=(b,c,x,y)
|
|
|
|
Returns:
|
|
output: hd_loss
|
|
"""
|
|
assert seg_soft.shape[0] == gt.shape[0]
|
|
total_loss = 0
|
|
num_class = seg_soft.shape[1]
|
|
if class_weight is not None:
|
|
assert class_weight.ndim == num_class
|
|
for i in range(1, num_class):
|
|
if i != ignore_index:
|
|
delta_s = (seg_soft[:, i, ...] - gt.float())**2
|
|
s_dtm = seg_dtm[:, i, ...]**2
|
|
g_dtm = gt_dtm[:, i, ...]**2
|
|
dtm = s_dtm + g_dtm
|
|
multiplied = torch.einsum('bxy, bxy->bxy', delta_s, dtm)
|
|
hd_loss = multiplied.mean()
|
|
if class_weight is not None:
|
|
hd_loss *= class_weight[i]
|
|
total_loss += hd_loss
|
|
|
|
return total_loss / num_class
|
|
|
|
|
|
@MODELS.register_module()
|
|
class HuasdorffDisstanceLoss(nn.Module):
|
|
"""HuasdorffDisstanceLoss. This loss is proposed in `How Distance Transform
|
|
Maps Boost Segmentation CNNs: An Empirical Study.
|
|
|
|
<http://proceedings.mlr.press/v121/ma20b.html>`_.
|
|
Args:
|
|
reduction (str, optional): The method used to reduce the loss into
|
|
a scalar. Defaults to 'mean'.
|
|
class_weight (list[float] | str, optional): Weight of each class. If in
|
|
str format, read them from a file. Defaults to None.
|
|
loss_weight (float): Weight of the loss. Defaults to 1.0.
|
|
ignore_index (int | None): The label index to be ignored. Default: 255.
|
|
loss_name (str): Name of the loss item. If you want this loss
|
|
item to be included into the backward graph, `loss_` must be the
|
|
prefix of the name. Defaults to 'loss_boundary'.
|
|
"""
|
|
|
|
def __init__(self,
|
|
reduction='mean',
|
|
class_weight=None,
|
|
loss_weight=1.0,
|
|
ignore_index=255,
|
|
loss_name='loss_huasdorff_disstance',
|
|
**kwargs):
|
|
super().__init__()
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
self.class_weight = get_class_weight(class_weight)
|
|
self._loss_name = loss_name
|
|
self.ignore_index = ignore_index
|
|
|
|
def forward(self,
|
|
pred: Tensor,
|
|
target: Tensor,
|
|
avg_factor=None,
|
|
reduction_override=None,
|
|
**kwargs) -> Tensor:
|
|
"""Forward function.
|
|
|
|
Args:
|
|
pred (Tensor): Predictions of the segmentation head. (B, C, H, W)
|
|
target (Tensor): Ground truth of the image. (B, H, W)
|
|
avg_factor (int, optional): Average factor that is used to
|
|
average the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used
|
|
to override the original reduction method of the loss.
|
|
Options are "none", "mean" and "sum".
|
|
Returns:
|
|
Tensor: Loss tensor.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
if self.class_weight is not None:
|
|
class_weight = pred.new_tensor(self.class_weight)
|
|
else:
|
|
class_weight = None
|
|
|
|
pred_soft = F.softmax(pred, dim=1)
|
|
valid_mask = (target != self.ignore_index).long()
|
|
target = target * valid_mask
|
|
|
|
with torch.no_grad():
|
|
gt_dtm = compute_dtm(target.cpu(), pred_soft)
|
|
gt_dtm = gt_dtm.float()
|
|
seg_dtm2 = compute_dtm(
|
|
pred_soft.argmax(dim=1, keepdim=False).cpu(), pred_soft)
|
|
seg_dtm2 = seg_dtm2.float()
|
|
|
|
loss_hd = self.loss_weight * hd_loss(
|
|
pred_soft,
|
|
target,
|
|
seg_dtm=seg_dtm2,
|
|
gt_dtm=gt_dtm,
|
|
reduction=reduction,
|
|
avg_factor=avg_factor,
|
|
class_weight=class_weight,
|
|
ignore_index=self.ignore_index)
|
|
return loss_hd
|
|
|
|
@property
|
|
def loss_name(self):
|
|
return self._loss_name
|