227 lines
7.3 KiB
Python
227 lines
7.3 KiB
Python
default_hooks = dict(
|
|
checkpoint=dict(
|
|
by_epoch=False,
|
|
interval=1000,
|
|
max_keep_ckpts=1,
|
|
save_best='mIoU',
|
|
type='CheckpointHook'),
|
|
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
timer=dict(type='IterTimerHook'),
|
|
visualization=dict(type='SegVisualizationHook'))
|
|
default_scope = 'mmseg'
|
|
env_cfg = dict(
|
|
cudnn_benchmark=True,
|
|
dist_cfg=dict(backend='nccl'),
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
|
launcher = 'pytorch'
|
|
load_from = None
|
|
log_level = 'INFO'
|
|
log_processor = dict(by_epoch=False)
|
|
model = dict(
|
|
auxiliary_head=dict(
|
|
align_corners=False,
|
|
channels=256,
|
|
concat_input=False,
|
|
dropout_ratio=0.1,
|
|
in_channels=512,
|
|
in_index=3,
|
|
loss_decode=dict(
|
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=2,
|
|
num_convs=1,
|
|
type='FCNHead'),
|
|
backbone=dict(
|
|
act_cfg=dict(type='GELU'),
|
|
attn_drop_rate=0.0,
|
|
downscale_indices=(5, 11,),
|
|
drop_path_rate=0.0,
|
|
drop_rate=0.1,
|
|
embed_dims=1024,
|
|
img_size=(256, 256,),
|
|
in_channels=10,
|
|
interpolate_mode='bilinear',
|
|
mlp_ratio=4,
|
|
norm_cfg=dict(eps=1e-06, requires_grad=True, type='LN'),
|
|
norm_eval=False,
|
|
num_heads=16,
|
|
num_layers=24,
|
|
out_indices=(5, 11, 17, 23,),
|
|
patch_size=4,
|
|
qkv_bias=True,
|
|
type='VisionTransformer',
|
|
with_cls_token=False),
|
|
data_preprocessor=dict(
|
|
bgr_to_rgb=True,
|
|
mean=[4.50021132, 6.09891466, 7.50766315, 9.54643074, 12.82568112, 14.29062133, 15.24644993, 15.73945708, 16.60374872, 12.31011599,],
|
|
pad_val=0,
|
|
seg_pad_val=255,
|
|
size=(256, 256,),
|
|
std=[2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 1.37103968, ],
|
|
type='SegDataPreProcessor'),
|
|
decode_head=dict(
|
|
align_corners=False,
|
|
channels=512,
|
|
dropout_ratio=0.1,
|
|
in_channels=[512, 512, 512, 512,],
|
|
in_index=[0, 1, 2, 3,],
|
|
loss_decode=dict(
|
|
loss_weight=1.0, type='CrossEntropyLoss', balance=True, max_scale=4.0, use_sigmoid=False),
|
|
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
|
num_classes=2,
|
|
pool_scales=(1, 2, 3, 6,),
|
|
type='UPerHead'),
|
|
neck=dict(
|
|
in_channels=[1024, 1024, 1024, 1024,],
|
|
out_channels=512,
|
|
scales=[1, 1, 1, 1,],
|
|
type='MultiLevelNeck'),
|
|
pretrained='pretrain/skysensepp_mmcvt_s2.pth',
|
|
test_cfg=dict(mode='whole'),
|
|
train_cfg=dict(),
|
|
type='EncoderDecoder')
|
|
optim_wrapper = dict(
|
|
optimizer=dict(betas=(0.9, 0.999,), lr=None, type='AdamW', weight_decay=None,),
|
|
constructor='LearningRateDecayOptimizerConstructor',
|
|
paramwise_cfg=dict(
|
|
num_layers=24,
|
|
decay_rate=None,
|
|
decay_type='layer_wise',
|
|
custom_keys=dict(
|
|
cls_token=dict(decay_mult=0.0),
|
|
norm=dict(decay_mult=0.0),
|
|
pos_embed=dict(decay_mult=0.0))),
|
|
type='OptimWrapper')
|
|
param_scheduler = [
|
|
dict(
|
|
begin=0, by_epoch=False, end=1000, start_factor=1e-06,
|
|
type='LinearLR'),
|
|
dict(
|
|
begin=1000,
|
|
by_epoch=False,
|
|
end=10000,
|
|
eta_min=0.0,
|
|
power=1.0,
|
|
type='PolyLR'),
|
|
]
|
|
randomness = dict(seed=20240315)
|
|
resume = False
|
|
test_cfg = dict(type='TestLoop')
|
|
test_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/cabuar/cabura_val_fold_4.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', type='LoadImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=False,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='CABURADataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
test_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
'mFscore',
|
|
], type='IoUMetric')
|
|
test_pipeline = [
|
|
dict(data_key='image', type='LoadImageFromNpz'),
|
|
dict(data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
]
|
|
train_cfg = dict(max_iters=10000, type='IterBasedTrainLoop', val_interval=500)
|
|
train_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/cabuar/cabura_train_fold0_3.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', type='LoadImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=False,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(
|
|
cat_max_ratio=0.75, crop_size=(
|
|
256,
|
|
256,
|
|
), type='RandomCrop'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='CABURADataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
|
tta_model = dict(type='SegTTAModel')
|
|
tta_pipeline = [
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(
|
|
transforms=[
|
|
[
|
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.2, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.4, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.6, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=1.8, type='Resize'),
|
|
dict(keep_ratio=True, scale_factor=2.0, type='Resize'),
|
|
],
|
|
[
|
|
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
|
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
|
],
|
|
[
|
|
dict(type='LoadAnnotations'),
|
|
],
|
|
[
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
],
|
|
type='TestTimeAug'),
|
|
]
|
|
val_cfg = dict(type='ValLoop')
|
|
val_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file=
|
|
'rs_datasets/cabuar/cabura_val_fold_4.json',
|
|
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
|
|
data_root='rs_datasets/',
|
|
pipeline=[
|
|
dict(data_key='image', type='LoadImageFromNpz'),
|
|
dict(
|
|
data_key='image',
|
|
reduce_zero_label=False,
|
|
type='LoadAnnotationsNpz'),
|
|
dict(type='PackSegInputs'),
|
|
],
|
|
type='CABURADataset'),
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
val_evaluator = dict(
|
|
iou_metrics=[
|
|
'mIoU',
|
|
'mFscore',
|
|
], type='IoUMetric')
|
|
vis_backends = [
|
|
dict(type='LocalVisBackend'),
|
|
]
|
|
visualizer = dict(
|
|
name='visualizer',
|
|
type='SegLocalVisualizer',
|
|
vis_backends=[
|
|
dict(type='LocalVisBackend'),
|
|
])
|
|
work_dir = 'work_dirs/ft_cabura_test' |