# Pretraining Data Builder This code is for building pretraining data for the self-supervised learning of SkySense++. ## Install Prepare the environment: ``` conda create -n data_builder python=3.12 conda activate data_builder pip install -r requirements.txt ``` Download pretraining data list in lmdb format from [Zenodo](https://zenodo.org/records/14994430) ## Download Data ``` python -m rsi_download --username --password --api_key ``` Notes: 1. `username` and `password` can be created in the [Copernicus Data Space Ecosystem](https://data.copernicus.eu/cdsapp/#!/home), `api_key` can be created in the [Maxar](https://ard.maxar.com/docs/about/). 2. `X` `Y` `Z` are coordinates in the Web Mercator coordinate system. 3. `date_min` and `date_max` are in the format of `YYYY-MM`. ## Process Data ``` python -m rsi_process --platform --fn_img path/to/image.zip --save_dir output_/ ``` Notes: 1. `platform` can be `s1`, `s2`, `wv`. 2. `fn_img` is the path to the downloaded zip file. 3. `save_dir` is the directory to save the processed data. ## Automatic Script ``` sh run_data_builder.sh ``` This script will first read the pretraining list, then download the data according to the list, and proceed them automatically.