default_hooks = dict( checkpoint=dict( by_epoch=False, interval=1000, max_keep_ckpts=1, save_best='mIoU', type='CheckpointHook'), logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='SegVisualizationHook')) default_scope = 'mmseg' env_cfg = dict( cudnn_benchmark=True, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) launcher = 'pytorch' load_from = None log_level = 'INFO' log_processor = dict(by_epoch=False) model = dict( auxiliary_head=dict( align_corners=False, channels=256, concat_input=False, dropout_ratio=0.1, in_channels=512, in_index=3, loss_decode=dict( loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=2, num_convs=1, type='FCNHead'), backbone=dict( act_cfg=dict(type='GELU'), attn_drop_rate=0.0, downscale_indices=(5, 11,), drop_path_rate=0.0, drop_rate=0.1, embed_dims=1024, img_size=(256, 256,), in_channels=10, interpolate_mode='bilinear', mlp_ratio=4, norm_cfg=dict(eps=1e-06, requires_grad=True, type='LN'), norm_eval=False, num_heads=16, num_layers=24, out_indices=(5, 11, 17, 23,), patch_size=4, qkv_bias=True, type='VisionTransformer', with_cls_token=False), data_preprocessor=dict( bgr_to_rgb=True, mean=[4.50021132, 6.09891466, 7.50766315, 9.54643074, 12.82568112, 14.29062133, 15.24644993, 15.73945708, 16.60374872, 12.31011599,], pad_val=0, seg_pad_val=255, size=(256, 256,), std=[2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 1.37103968, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=512, dropout_ratio=0.1, in_channels=[512, 512, 512, 512,], in_index=[0, 1, 2, 3,], loss_decode=dict( loss_weight=1.0, type='CrossEntropyLoss', balance=True, max_scale=4.0, use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=2, pool_scales=(1, 2, 3, 6,), type='UPerHead'), neck=dict( in_channels=[1024, 1024, 1024, 1024,], out_channels=512, scales=[1, 1, 1, 1,], type='MultiLevelNeck'), pretrained='pretrain/skysensepp_mmcvt_s2.pth', test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder') optim_wrapper = dict( optimizer=dict(betas=(0.9, 0.999,), lr=None, type='AdamW', weight_decay=None,), constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg=dict( num_layers=24, decay_rate=None, decay_type='layer_wise', custom_keys=dict( cls_token=dict(decay_mult=0.0), norm=dict(decay_mult=0.0), pos_embed=dict(decay_mult=0.0))), type='OptimWrapper') param_scheduler = [ dict( begin=0, by_epoch=False, end=1000, start_factor=1e-06, type='LinearLR'), dict( begin=1000, by_epoch=False, end=10000, eta_min=0.0, power=1.0, type='PolyLR'), ] randomness = dict(seed=20240315) resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( ann_file= 'rs_datasets/cabuar/cabura_val_fold_4.json', data_prefix=dict(img_path='images', seg_map_path='idx_labels'), data_root='rs_datasets/', pipeline=[ dict(data_key='image', type='LoadImageFromNpz'), dict( data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'), dict(type='PackSegInputs'), ], type='CABURADataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( iou_metrics=[ 'mIoU', 'mFscore', ], type='IoUMetric') test_pipeline = [ dict(data_key='image', type='LoadImageFromNpz'), dict(data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'), dict(type='PackSegInputs'), ] train_cfg = dict(max_iters=10000, type='IterBasedTrainLoop', val_interval=500) train_dataloader = dict( batch_size=1, dataset=dict( ann_file= 'rs_datasets/cabuar/cabura_train_fold0_3.json', data_prefix=dict(img_path='images', seg_map_path='idx_labels'), data_root='rs_datasets/', pipeline=[ dict(data_key='image', type='LoadImageFromNpz'), dict( data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'), dict( cat_max_ratio=0.75, crop_size=( 256, 256, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PackSegInputs'), ], type='CABURADataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='InfiniteSampler')) tta_model = dict(type='SegTTAModel') tta_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict( transforms=[ [ dict(keep_ratio=True, scale_factor=1.0, type='Resize'), dict(keep_ratio=True, scale_factor=1.2, type='Resize'), dict(keep_ratio=True, scale_factor=1.4, type='Resize'), dict(keep_ratio=True, scale_factor=1.6, type='Resize'), dict(keep_ratio=True, scale_factor=1.8, type='Resize'), dict(keep_ratio=True, scale_factor=2.0, type='Resize'), ], [ dict(direction='horizontal', prob=0.0, type='RandomFlip'), dict(direction='horizontal', prob=1.0, type='RandomFlip'), ], [ dict(type='LoadAnnotations'), ], [ dict(type='PackSegInputs'), ], ], type='TestTimeAug'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( ann_file= 'rs_datasets/cabuar/cabura_val_fold_4.json', data_prefix=dict(img_path='images', seg_map_path='idx_labels'), data_root='rs_datasets/', pipeline=[ dict(data_key='image', type='LoadImageFromNpz'), dict( data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'), dict(type='PackSegInputs'), ], type='CABURADataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( iou_metrics=[ 'mIoU', 'mFscore', ], type='IoUMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='SegLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = 'work_dirs/ft_cabura_test'