This commit is contained in:
esenke
2025-12-08 22:16:31 +08:00
commit 01adcfdf60
305 changed files with 50879 additions and 0 deletions

View File

@@ -0,0 +1,702 @@
from copy import deepcopy
from typing import Sequence
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner.base_module import BaseModule, ModuleList
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmcls.models.utils import (PatchMerging, ShiftWindowMSA, WindowMSAV2,
resize_pos_embed, to_2tuple)
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcv.runner import (CheckpointLoader,
load_state_dict)
from mmcv.cnn.bricks.transformer import MultiheadAttention
class SwinBlockV2(BaseModule):
"""Swin Transformer V2 block. Use post normalization.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
shift (bool): Shift the attention window or not. Defaults to False.
extra_norm (bool): Whether add extra norm at the end of main branch.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
drop_path (float): The drop path rate after attention and ffn.
Defaults to 0.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
attn_cfgs (dict): The extra config of Shift Window-MSA.
Defaults to empty dict.
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
norm_cfg (dict): The config of norm layers.
Defaults to ``dict(type='LN')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
pretrained_window_size (int): Window size in pretrained.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size=8,
shift=False,
extra_norm=False,
ffn_ratio=4.,
drop_path=0.,
pad_small_map=False,
attn_cfgs=dict(),
ffn_cfgs=dict(),
norm_cfg=dict(type='LN'),
with_cp=False,
pretrained_window_size=0,
init_cfg=None):
super(SwinBlockV2, self).__init__(init_cfg)
self.with_cp = with_cp
self.extra_norm = extra_norm
_attn_cfgs = {
'embed_dims': embed_dims,
'num_heads': num_heads,
'shift_size': window_size // 2 if shift else 0,
'window_size': window_size,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'pad_small_map': pad_small_map,
**attn_cfgs
}
# use V2 attention implementation
_attn_cfgs.update(
window_msa=WindowMSAV2,
msa_cfg=dict(
pretrained_window_size=to_2tuple(pretrained_window_size)))
self.attn = ShiftWindowMSA(**_attn_cfgs)
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
_ffn_cfgs = {
'embed_dims': embed_dims,
'feedforward_channels': int(embed_dims * ffn_ratio),
'num_fcs': 2,
'ffn_drop': 0,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'act_cfg': dict(type='GELU'),
'add_identity': False,
**ffn_cfgs
}
self.ffn = FFN(**_ffn_cfgs)
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
# add extra norm for every n blocks in huge and giant model
if self.extra_norm:
self.norm3 = build_norm_layer(norm_cfg, embed_dims)[1]
def forward(self, x, hw_shape):
def _inner_forward(x):
# Use post normalization
identity = x
x = self.attn(x, hw_shape)
x = self.norm1(x)
x = x + identity
identity = x
x = self.ffn(x)
x = self.norm2(x)
x = x + identity
if self.extra_norm:
x = self.norm3(x)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class SwinBlockV2Sequence(BaseModule):
"""Module with successive Swin Transformer blocks and downsample layer.
Args:
embed_dims (int): Number of input channels.
depth (int): Number of successive swin transformer blocks.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
downsample (bool): Downsample the output of blocks by patch merging.
Defaults to False.
downsample_cfg (dict): The extra config of the patch merging layer.
Defaults to empty dict.
drop_paths (Sequence[float] | float): The drop path rate in each block.
Defaults to 0.
block_cfgs (Sequence[dict] | dict): The extra config of each block.
Defaults to empty dicts.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
extra_norm_every_n_blocks (int): Add extra norm at the end of main
branch every n blocks. Defaults to 0, which means no needs for
extra norm layer.
pretrained_window_size (int): Window size in pretrained.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
depth,
num_heads,
window_size=8,
downsample=False,
downsample_cfg=dict(),
drop_paths=0.,
block_cfgs=dict(),
with_cp=False,
pad_small_map=False,
extra_norm_every_n_blocks=0,
pretrained_window_size=0,
init_cfg=None):
super().__init__(init_cfg)
if not isinstance(drop_paths, Sequence):
drop_paths = [drop_paths] * depth
if not isinstance(block_cfgs, Sequence):
block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]
if downsample:
self.out_channels = 2 * embed_dims
_downsample_cfg = {
'in_channels': embed_dims,
'out_channels': self.out_channels,
'norm_cfg': dict(type='LN'),
**downsample_cfg
}
self.downsample = PatchMerging(**_downsample_cfg)
else:
self.out_channels = embed_dims
self.downsample = None
self.blocks = ModuleList()
for i in range(depth):
extra_norm = True if extra_norm_every_n_blocks and \
(i + 1) % extra_norm_every_n_blocks == 0 else False
_block_cfg = {
'embed_dims': self.out_channels,
'num_heads': num_heads,
'window_size': window_size,
'shift': False if i % 2 == 0 else True,
'extra_norm': extra_norm,
'drop_path': drop_paths[i],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
'pretrained_window_size': pretrained_window_size,
**block_cfgs[i]
}
block = SwinBlockV2(**_block_cfg)
self.blocks.append(block)
def forward(self, x, in_shape):
if self.downsample:
x, out_shape = self.downsample(x, in_shape)
else:
out_shape = in_shape
for block in self.blocks:
x = block(x, out_shape)
return x, out_shape
class SwinTransformerV2(BaseBackbone):
"""Swin Transformer V2.
A PyTorch implement of : `Swin Transformer V2:
Scaling Up Capacity and Resolution
<https://arxiv.org/abs/2111.09883>`_
Inspiration from
https://github.com/microsoft/Swin-Transformer
Args:
arch (str | dict): Swin Transformer architecture. If use string, choose
from 'tiny', 'small', 'base' and 'large'. If use dict, it should
have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **num_heads** (List[int]): The number of heads in attention
modules of each stage.
- **extra_norm_every_n_blocks** (int): Add extra norm at the end
of main branch every n blocks.
Defaults to 'tiny'.
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to the most
common input image shape. Defaults to 224.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 4.
in_channels (int): The num of input channels. Defaults to 3.
window_size (int | Sequence): The height and width of the window.
Defaults to 7.
drop_rate (float): Dropout rate after embedding. Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
use_abs_pos_embed (bool): If True, add absolute position embedding to
the patch embedding. Defaults to False.
interpolate_mode (str): Select the interpolate mode for absolute
position embeding vector resize. Defaults to "bicubic".
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
norm_cfg (dict): Config dict for normalization layer for all output
features. Defaults to ``dict(type='LN')``
stage_cfgs (Sequence[dict] | dict): Extra config dict for each
stage. Defaults to an empty dict.
patch_cfg (dict): Extra config dict for patch embedding.
Defaults to an empty dict.
pretrained_window_sizes (tuple(int)): Pretrained window sizes of
each layer.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Examples:
>>> from mmcls.models import SwinTransformerV2
>>> import torch
>>> extra_config = dict(
>>> arch='tiny',
>>> stage_cfgs=dict(downsample_cfg={'kernel_size': 3,
>>> 'padding': 'same'}))
>>> self = SwinTransformerV2(**extra_config)
>>> inputs = torch.rand(1, 3, 224, 224)
>>> output = self.forward(inputs)
>>> print(output.shape)
(1, 2592, 4)
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'embed_dims': 96,
'depths': [2, 2, 6, 2],
'num_heads': [3, 6, 12, 24],
'extra_norm_every_n_blocks': 0}),
**dict.fromkeys(['s', 'small'],
{'embed_dims': 96,
'depths': [2, 2, 18, 2],
'num_heads': [3, 6, 12, 24],
'extra_norm_every_n_blocks': 0}),
**dict.fromkeys(['b', 'base'],
{'embed_dims': 128,
'depths': [2, 2, 18, 2],
'num_heads': [4, 8, 16, 32],
'extra_norm_every_n_blocks': 0}),
**dict.fromkeys(['l', 'large'],
{'embed_dims': 192,
'depths': [2, 2, 18, 2],
'num_heads': [6, 12, 24, 48],
'extra_norm_every_n_blocks': 0}),
# head count not certain for huge, and is employed for another
# parallel study about self-supervised learning.
**dict.fromkeys(['h', 'huge'],
{'embed_dims': 352,
'depths': [2, 2, 18, 2],
'num_heads': [8, 16, 32, 64],
'extra_norm_every_n_blocks': 6}),
**dict.fromkeys(['g', 'giant'],
{'embed_dims': 512,
'depths': [2, 2, 42, 4],
'num_heads': [16, 32, 64, 128],
'extra_norm_every_n_blocks': 6}),
} # yapf: disable
_version = 1
num_extra_tokens = 0
def __init__(self,
arch='tiny',
img_size=256,
patch_size=4,
in_channels=3,
vocabulary_size=128,
window_size=8,
drop_rate=0.,
drop_path_rate=0.1,
out_indices=(3, ),
use_abs_pos_embed=False,
interpolate_mode='bicubic',
with_cp=False,
frozen_stages=-1,
norm_eval=False,
pad_small_map=False,
norm_cfg=dict(type='LN'),
stage_cfgs=dict(downsample_cfg=dict(is_post_norm=True)),
patch_cfg=dict(),
pretrained_window_sizes=[0, 0, 0, 0],
init_cfg=None):
super(SwinTransformerV2, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims', 'depths', 'num_heads',
'extra_norm_every_n_blocks'
}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.vocabulary_size = vocabulary_size + 1 # 增加ignore类别
self.embed_dims = self.arch_settings['embed_dims']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.extra_norm_every_n_blocks = self.arch_settings[
'extra_norm_every_n_blocks']
self.num_layers = len(self.depths)
self.out_indices = out_indices
self.use_abs_pos_embed = use_abs_pos_embed
self.interpolate_mode = interpolate_mode
self.frozen_stages = frozen_stages
if isinstance(window_size, int):
self.window_sizes = [window_size for _ in range(self.num_layers)]
elif isinstance(window_size, Sequence):
assert len(window_size) == self.num_layers, \
f'Length of window_sizes {len(window_size)} is not equal to '\
f'length of stages {self.num_layers}.'
self.window_sizes = window_size
else:
raise TypeError('window_size should be a Sequence or int.')
_patch_cfg = dict(
in_channels=in_channels,
input_size=img_size,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
norm_cfg=dict(type='LN'),
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.patch_resolution = self.patch_embed.init_out_size
self.patch_size = patch_size
if self.use_abs_pos_embed:
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, self.embed_dims))
self._register_load_state_dict_pre_hook(
self._prepare_abs_pos_embed)
self._register_load_state_dict_pre_hook(self._delete_reinit_params)
self.drop_after_pos = nn.Dropout(p=drop_rate)
self.norm_eval = norm_eval
# stochastic depth
total_depth = sum(self.depths)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
self.stages = ModuleList()
embed_dims = [self.embed_dims]
for i, (depth, num_heads) in enumerate(zip(self.depths,
self.num_heads)):
if isinstance(stage_cfgs, Sequence):
stage_cfg = stage_cfgs[i]
else:
stage_cfg = deepcopy(stage_cfgs)
downsample = True if i > 0 else False
_stage_cfg = {
'embed_dims': embed_dims[-1],
'depth': depth,
'num_heads': num_heads,
'window_size': self.window_sizes[i],
'downsample': downsample,
'drop_paths': dpr[:depth],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
'extra_norm_every_n_blocks': self.extra_norm_every_n_blocks,
'pretrained_window_size': pretrained_window_sizes[i],
**stage_cfg
}
stage = SwinBlockV2Sequence(**_stage_cfg)
self.stages.append(stage)
dpr = dpr[depth:]
embed_dims.append(stage.out_channels)
for i in out_indices:
if norm_cfg is not None:
norm_layer = build_norm_layer(norm_cfg, embed_dims[i + 1])[1]
else:
norm_layer = nn.Identity()
self.add_module(f'norm{i}', norm_layer)
def init_weights(self):
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress default init if use pretrained model.
from mmcls.utils import get_root_logger
logger = get_root_logger()
checkpoint = CheckpointLoader.load_checkpoint(
self.init_cfg['checkpoint'], logger=logger, map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
# print(self.state_dict().keys())
# print('---')
# print(state_dict.keys())
# import pdb; pdb.set_trace()
load_state_dict(self, state_dict, strict=False, logger=logger)
return
else:
super(SwinTransformerV2, self).init_weights()
if self.use_abs_pos_embed:
trunc_normal_(self.absolute_pos_embed, std=0.02)
def forward(self, x):
x, hw_shape = self.patch_embed(x)
if self.use_abs_pos_embed:
x = x + resize_pos_embed(
self.absolute_pos_embed, self.patch_resolution, hw_shape,
self.interpolate_mode, self.num_extra_tokens)
x = self.drop_after_pos(x)
outs = []
for i, stage in enumerate(self.stages):
x, hw_shape = stage(x, hw_shape)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
out = norm_layer(x)
out = out.view(-1, *hw_shape,
stage.out_channels).permute(0, 3, 1,
2).contiguous()
outs.append(out)
return outs
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
for i in range(0, self.frozen_stages + 1):
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in self.out_indices:
if i <= self.frozen_stages:
for param in getattr(self, f'norm{i}').parameters():
param.requires_grad = False
def train(self, mode=True):
super(SwinTransformerV2, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs):
name = prefix + 'absolute_pos_embed'
if name not in state_dict.keys():
return
ckpt_pos_embed_shape = state_dict[name].shape
if self.absolute_pos_embed.shape != ckpt_pos_embed_shape:
from mmcls.utils import get_root_logger
logger = get_root_logger()
logger.info(
'Resize the absolute_pos_embed shape from '
f'{ckpt_pos_embed_shape} to {self.absolute_pos_embed.shape}.')
ckpt_pos_embed_shape = to_2tuple(
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
pos_embed_shape = self.patch_embed.init_out_size
state_dict[name] = resize_pos_embed(state_dict[name],
ckpt_pos_embed_shape,
pos_embed_shape,
self.interpolate_mode,
self.num_extra_tokens)
def _delete_reinit_params(self, state_dict, prefix, *args, **kwargs):
# delete relative_position_index since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if 'relative_position_index' in k
]
for k in relative_position_index_keys:
del state_dict[k]
# delete relative_coords_table since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if 'relative_coords_table' in k
]
for k in relative_position_index_keys:
del state_dict[k]
class Proj_MHSA(nn.Module):
def __init__(
self,
embed_dims,
proj_dims,
num_heads=16,
batch_first=True,
bias = True
):
super().__init__()
self.proj_in = nn.Linear(in_features=embed_dims, out_features=proj_dims)
self.attn = MultiheadAttention(
embed_dims=proj_dims,
num_heads=num_heads,
batch_first=batch_first,
bias=bias
)
self.proj_out = nn.Linear(in_features=proj_dims, out_features=embed_dims)
def forward(self, x):
x = self.proj_in(x)
x = self.attn(x, x, x)
x = self.proj_out(x)
return x
class SwinTransformerV2MSL(SwinTransformerV2):
def __init__(self, **kwargs):
if 'use_attn' in kwargs:
self.use_attn = kwargs.pop('use_attn')
else:
self.use_attn = False
if 'merge_stage' in kwargs:
self.merge_stage = kwargs.pop('merge_stage')
else:
self.merge_stage = 0
if 'with_cls_pos' in kwargs:
self.with_cls_pos = kwargs.pop('with_cls_pos')
else:
self.with_cls_pos = False
super().__init__(**kwargs)
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
#self.vocabulary_token = nn.Parameter(torch.zeros(1, 1, 1, self.vocabulary_size, self.embed_dims))
self.vocabulary_token = nn.Parameter(torch.zeros(self.vocabulary_size, self.embed_dims))
self.vocabulary_weight = nn.Parameter(torch.zeros(1, self.patch_size * self.patch_size))
trunc_normal_(self.mask_token, mean=0., std=.02)
trunc_normal_(self.vocabulary_token, mean=0., std=.02)
if self.use_attn:
self.attn1 = Proj_MHSA(embed_dims=352, proj_dims=256, num_heads=16, batch_first=True, bias = True)
self.attn2 = Proj_MHSA(embed_dims=704, proj_dims=512, num_heads=16, batch_first=True, bias = True)
self.attn3 = Proj_MHSA( embed_dims=1408, proj_dims=1024, num_heads=16, batch_first=True, bias = True)
self.attention_blocks = [self.attn1, self.attn2, self.attn3]
self.norm_attn = build_norm_layer(dict(type='LN'), 1408)[1]
def create_ann_token(self, anno_img):
B, H, W = anno_img.shape
ann_token = torch.index_select(self.vocabulary_token, 0, anno_img.reshape(-1)).reshape(B, H, W, -1)
assert H % self.patch_size == 0 and W % self.patch_size == 0
nph, npw = H // self.patch_size, W // self.patch_size
weight = F.softmax(self.vocabulary_weight, dim=1) * self.patch_size * self.patch_size
weight = weight.reshape(1, 1, self.patch_size, 1, self.patch_size).repeat(1, nph, 1, npw, 1).reshape(1, H, W, 1)
ann_token = ann_token * weight
ann_token = F.avg_pool2d(torch.einsum('BHWC->BCHW', ann_token), self.patch_size, self.patch_size)
ann_token = torch.einsum('BCHW->BHWC', ann_token).reshape(B, nph * npw, self.embed_dims) # shape B, L, C
return ann_token
def forward(self, hr_img, anno_img, mask=None):
x, hw_shape = self.patch_embed(hr_img)
y = self.create_ann_token(anno_img)
assert x.shape == y.shape
B, L, C = y.shape
if mask is not None:
mask_tokens = self.mask_token.expand(B, L, -1)
w = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens)
y = y * (1. - w) + mask_tokens * w
if self.merge_stage == 0:
x = (x + y) * 0.5
else:
x = x.reshape(B, *hw_shape, C)
y = y.reshape(B, *hw_shape, C)
x = torch.cat((x, y), dim=2)
hw_shape = (hw_shape[0], hw_shape[1] * 2)
x = x.reshape(B, -1, C)
if self.use_abs_pos_embed:
x = x + resize_pos_embed(
self.absolute_pos_embed, self.patch_resolution, hw_shape,
self.interpolate_mode, self.num_extra_tokens)
if self.with_cls_pos:
hw_shape_half = [hw_shape[0], hw_shape[1] // 2]
x = x.reshape(B, *hw_shape, C)
x1 = x[:, :, :x.shape[2]//2, :].reshape(B, -1, C)
x2 = x[:, :, x.shape[2]//2:, :].reshape(B, -1, C)
x1 = x1 + resize_pos_embed(
self.absolute_pos_embed, self.patch_resolution, hw_shape_half,
self.interpolate_mode, self.num_extra_tokens)
x2 = x2 + resize_pos_embed(
self.absolute_pos_embed, self.patch_resolution, hw_shape_half,
self.interpolate_mode, self.num_extra_tokens)
x1 = x1.reshape(B, *hw_shape_half, C)
x2 = x2.reshape(B, *hw_shape_half, C)
x = torch.cat((x1, x2), dim=2).reshape(B, -1, C)
x = self.drop_after_pos(x)
outs = []
merge_idx = self.merge_stage - 1
for i, stage in enumerate(self.stages):
x, hw_shape = stage(x, hw_shape)
if i == merge_idx:
x = x.reshape(x.shape[0], *hw_shape, x.shape[-1]) # b,l,c -> b, h, w, c
x = (x[:, :, :x.shape[2]//2] + x[:, :, x.shape[2]//2:]) * 0.5
x = x.reshape(x.shape[0], -1, x.shape[-1])
hw_shape = (hw_shape[0], hw_shape[1] // 2)
if self.use_attn:
if i <= len(self.attention_blocks) - 1:
x = x + self.attention_blocks[i](x)
if i == len(self.attention_blocks) - 1:
x = self.norm_attn(x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
out = norm_layer(x)
out = out.view(-1, *hw_shape, stage.out_channels).permute(0, 3, 1, 2).contiguous()
outs.append(out)
return outs