This commit is contained in:
esenke
2025-12-08 22:16:31 +08:00
commit 01adcfdf60
305 changed files with 50879 additions and 0 deletions

View File

@@ -0,0 +1,77 @@
import random
from functools import lru_cache
import numpy as np
dataset_color_dict = {
"potsdam" : [[1], [2], [3], [4], [5]],
"vaihingen" : [[255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255], [255, 255, 255]],
"deepglobe" : [[255,255,255], [0,0,255], [0,255,0],[255,0,255], [255,255,0], [0,255,255]],
"fbp" : [[i+1] for i in range(24)],
"loveda" : [[i+2, i+2, i+2] for i in range(6)],
"isaid" : [[i+1] for i in range(15)],
"pastis-mm" : [[i+1] for i in range(18)],
"dynamic-mm" : [[i] for i in range(7)],
"c2seg-ab" : [[i+1] for i in range(13)],
"flood3i": [[i+1] for i in range(9)],
"jl16-mm": [[i] for i in range(16)],
"flair-mm": [[i+1] for i in range(18)],
"dfc20": [[i+1] for i in range(10)]
}
modal_norm_dict = {
'hr' : {
'div' : 255.,
'mean' : [0.485, 0.456, 0.406],
'std' : [0.229, 0.224, 0.225]
},
'anno' : {
'div' : 255.,
'mean' : [0.485, 0.456, 0.406],
'std' : [0.229, 0.224, 0.225]
},
's2' : {
'div' : 1.,
'mean' : [884.29673756, 1144.16202635, 1297.47289228, 1624.90992062, 2194.6423161, 2422.21248945, 2517.76053101, 2581.64687018, 2368.51236873, 1805.06846033],
'std' : [1155.15170768, 1183.6292542, 1368.11351514, 1370.265037, 1355.55390699, 1416.51487101, 1474.78900051, 1439.3086061, 1455.52084939, 1343.48379601]
},
's1' : {
'div' : 1.,
'mean' : [-12.54847273, -20.19237134],
'std' : [5.25697717, 5.91150917]
},
}
@lru_cache()
def get_painter_color_map_list(num_locations = 300):
num_sep_per_channel = int(num_locations ** (1 / 3)) + 1 # 19
separation_per_channel = 256 // num_sep_per_channel
color_list = []
for location in range(num_locations):
num_seq_r = location // num_sep_per_channel ** 2
num_seq_g = (location % num_sep_per_channel ** 2) // num_sep_per_channel
num_seq_b = location % num_sep_per_channel
assert (num_seq_r <= num_sep_per_channel) and (num_seq_g <= num_sep_per_channel) \
and (num_seq_b <= num_sep_per_channel)
R = 255 - num_seq_r * separation_per_channel
G = 255 - num_seq_g * separation_per_channel
B = 255 - num_seq_b * separation_per_channel
assert (R < 256) and (G < 256) and (B < 256)
assert (R >= 0) and (G >= 0) and (B >= 0)
assert (R, G, B) not in color_list
color_list.append((R, G, B))
return color_list
def get_real_random_color_list(num_locations):
random_color_list = np.random.randint(0, 256, (num_locations, 3))
while np.sum(random_color_list) == 0:
print('random_color_list is 0!')
random_color_list = np.random.randint(0, 256, (num_locations, 3))
random_color_list = random_color_list.tolist()
return random_color_list # [:num_locations]

View File

@@ -0,0 +1,65 @@
from collections.abc import Sequence
import mmcv
import numpy as np
import torch
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(f'type {type(data)} cannot be converted to tensor.')
class ToTensor(object):
"""Convert some sample to :obj:`torch.Tensor` by given keys.
Args:
keys (Sequence[str]): Keys that need to be converted to Tensor.
"""
def __init__(self, keys):
self.keys = keys
def __call__(self, sample):
"""Call function to convert data in sample to :obj:`torch.Tensor`.
Args:
sample (Sample): sample data contains the data to convert.
Returns:
dict: The result dict contains the data converted
to :obj:`torch.Tensor`.
"""
for key in self.keys:
if isinstance(sample[key], list):
for i in range(len(sample[key])):
sample[key][i] = to_tensor(sample[key][i])
else:
sample[key] = to_tensor(sample[key])
return sample
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'

View File

@@ -0,0 +1,84 @@
import random
import math
import numpy as np
class MaskingGenerator:
def __init__(
self, input_size, patch_size, mask_ratio=0.5, min_num_patches=4, max_num_patches=None,
min_aspect=0.3, max_aspect=None):
if not isinstance(input_size, list):
input_size = [input_size,] * 2
self.height = input_size[0] // patch_size
self.width = input_size[1] // patch_size
self.num_patches = self.height * self.width
self.num_masking_patches = int(self.num_patches * mask_ratio)
self.min_num_patches = min_num_patches
self.max_num_patches = self.num_masking_patches if max_num_patches is None else max_num_patches
max_aspect = max_aspect or 1 / min_aspect
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
def __repr__(self):
repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height, self.width, self.min_num_patches, self.max_num_patches,
self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1])
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for attempt in range(10):
target_area = random.uniform(self.min_num_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < self.width and h < self.height:
top = random.randint(0, self.height - h)
left = random.randint(0, self.width - w)
num_masked = mask[top: top + h, left: left + w].sum()
# Overlap
if 0 < h * w - num_masked <= max_mask_patches:
for i in range(top, top + h):
for j in range(left, left + w):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=np.int32)
mask_count = 0
while mask_count < self.num_masking_patches:
max_mask_patches = self.num_masking_patches - mask_count
max_mask_patches = min(max_mask_patches, self.max_num_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
# maintain a fix number {self.num_masking_patches}
if mask_count > self.num_masking_patches:
delta = mask_count - self.num_masking_patches
mask_x, mask_y = mask.nonzero()
to_vis = np.random.choice(mask_x.shape[0], delta, replace=False)
mask[mask_x[to_vis], mask_y[to_vis]] = 0
elif mask_count < self.num_masking_patches:
delta = self.num_masking_patches - mask_count
mask_x, mask_y = (mask == 0).nonzero()
to_mask = np.random.choice(mask_x.shape[0], delta, replace=False)
mask[mask_x[to_mask], mask_y[to_mask]] = 1
assert mask.sum() == self.num_masking_patches, f"mask: {mask}, mask count {mask.sum()}"
return mask

View File

@@ -0,0 +1,532 @@
import math
import numbers
import random
import warnings
from collections.abc import Sequence
from typing import List, Optional, Tuple
import numpy as np
import torch
from torch import Tensor
import torchvision.transforms as transforms
from skimage import io
try:
import accimage
except ImportError:
accimage = None
import torchvision.transforms.functional as F
from torchvision.transforms.functional import _interpolation_modes_from_int, InterpolationMode
from PIL import Image, ImageFilter, ImageOps
from .dataset_colors import modal_norm_dict
__all__ = [
"Compose",
"ToTensor",
"Normalize",
"RandomHorizontalFlip",
"RandomResizedCrop",
]
class Compose(transforms.Compose):
"""Composes several transforms together. This transform does not support torchscript.
Please, see the note below.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
"""
def __init__(self, transforms):
super().__init__(transforms)
def __call__(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None):
# i = 0
for t in self.transforms:
# i = i+1
# print(f'dataset_name:{dataset_name}')
# print(f'step:{i}')
# print(f'hr_img shape:{hr_img.shape}')
# print(f's2_img shape:{s2_img.shape}')
# print(f's1_img shape:{s1_img.shape}')
# print(f'tgt shape:{tgt.shape}')
hr_img, s2_img, s1_img, tgt = t(dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=interpolation1, interpolation2=interpolation2)
return hr_img, s2_img, s1_img, tgt
class ToTensor(transforms.ToTensor):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
.. note::
Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
transforming target image masks. See the `references`_ for implementing the transforms for image masks.
.. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
# print(f'hr dtype:{hr_img.dtype}')
# print(f's2_img dtype:{s2_img.dtype}')
# print(f's1_img dtype:{s1_img.dtype}')
# print(f'tgt dtype:{tgt.dtype}')
if dataset_name == 'dynamic-mm' or dataset_name == 'guizhou-mm':
hr_img = hr_img.astype(np.int32)[:3,:,:]
hr_img = hr_img[::-1,:,:].copy()
else:
hr_img = hr_img.astype(np.int32)
tgt = tgt.astype(np.uint8)
s1_img = s1_img.astype(np.float32)
s2_img = s2_img.astype(np.int16)
return torch.tensor(hr_img), torch.tensor(s2_img), torch.tensor(s1_img),torch.tensor(tgt)
class Normalize(transforms.Normalize):
"""Normalize a tensor image with mean and standard deviation.
This transform does not support PIL Image.
Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
channels, this transform will normalize each channel of the input
``torch.*Tensor`` i.e.,
``output[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutate the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
inplace(bool,optional): Bool to make this operation in-place.
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=False):
super().__init__(mean, std, inplace)
def forward(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
tensor (Tensor): Tensor image to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
# TODO 查询对应的mean和std
# 处理一些mean和std
if dataset_name == 'dynamic-mm':
hr_std = [1008.4052, 760.9586, 631.4754]
hr_mean = [1085.2941, 944.2718, 689.2493]
hr_div = 1.
else:
hr_mean = modal_norm_dict['hr']['mean']
hr_std = modal_norm_dict['hr']['std']
hr_div = modal_norm_dict['hr']['div']
if dataset_name == 'l8activefire':
# if False:
s2_mean = modal_norm_dict['l8']['mean']
s2_std = modal_norm_dict['l8']['std']
s2_div = modal_norm_dict['l8']['div']
else:
s2_mean = modal_norm_dict['s2']['mean']
s2_std = modal_norm_dict['s2']['std']
s2_div = modal_norm_dict['s2']['div']
s1_mean = modal_norm_dict['s1']['mean']
s1_std = modal_norm_dict['s1']['std']
s1_div = modal_norm_dict['s1']['div']
anno_mean = [0.485, 0.456, 0.406]
anno_std = [0.229, 0.224, 0.225]
ann_div = 255.
# 存在问题:时间序列这样处理是否会出错
#mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
#std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
# print(s2_img.shape)
# import pdb; pdb.set_trace()
# print(s2_img)
try:
ch, ts, h, w = s2_img.shape
except:
print(f's2: {s2_img.shape}, s1: {s1_img.shape}')
s2_img = s2_img.view(ch, ts*h, w)
s2_img = self.normalize(s2_img.type(torch.float32), s2_mean, s2_std, self.inplace)
s2_img = s2_img.view(ch, ts, h, w)
ch, ts, h, w = s1_img.shape
s1_img = s1_img.view(ch, ts*h, w)
s1_img = self.normalize(s1_img.type(torch.float32), s1_mean, s1_std, self.inplace)
s1_img = s1_img.view(ch, ts, h, w)
# import pdb; pdb.set_trace()
# print(s2_img.shape, s2_img[:,0,:,:])
# print(s1_img.shape, s1_img[:,0,:,:])
# print(hr_mean, hr_std, hr_div)
return self.normalize(hr_img.type(torch.float32).div_(hr_div), hr_mean, hr_std, self.inplace), \
s2_img, \
s1_img, \
self.normalize(tgt.type(torch.float32).div_(ann_div) , anno_mean, anno_std, self.inplace)
def normalize(self, tensor, mean, std, inplace):
dtype = tensor.dtype
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
if (std == 0).any():
raise ValueError(f"std evaluated to zero after conversion to {dtype}, leading to division by zero.")
mean = mean.view(-1, 1, 1)
std = std.view(-1, 1, 1)
# print(f'tensor shape: {tensor.shape}')
# print(f'mean shape: {mean.shape}')
# print(f'std shape: {std.shape}')
return tensor.sub_(mean).div_(std)
class RandomResizedCrop(transforms.RandomResizedCrop):
"""Crop a random portion of image and resize it to a given size.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
A crop of the original image is made: the crop has a random area (H * W)
and a random aspect ratio. This crop is finally resized to the given
size. This is popularly used to train the Inception networks.
Args:
size (int or sequence): expected output size of the crop, for each edge. If size is an
int instead of sequence like (h, w), a square output size ``(size, size)`` is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
.. note::
In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
before resizing. The scale is defined with respect to the area of the original image.
ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
resizing.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
``InterpolationMode.BICUBIC`` are supported.
For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
"""
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation=InterpolationMode.BILINEAR,
mode='small'
):
super().__init__(size, scale=scale, ratio=ratio, interpolation=interpolation)
self.cnt=0
self.mode = mode
def forward(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None, mode='small'):
"""
Args:
img (PIL Image or Tensor): Image to be cropped and resized.
Returns:
PIL Image or Tensor: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(s2_img, self.scale, self.ratio)
size_hr = hr_img.shape[-1]
size_s2 = s2_img.shape[-1]
size_anno = tgt.shape[-1]
# 映射到其他模态
ratio_s2_hr = size_s2 / size_hr
i_hr = int(i / ratio_s2_hr)
j_hr = int(j / ratio_s2_hr)
h_hr = int(h / ratio_s2_hr)
w_hr = int(w / ratio_s2_hr)
ratio_s2_anno = size_s2 / size_anno
i_anno = int(i / ratio_s2_anno)
j_anno = int(j / ratio_s2_anno)
h_anno = int(h / ratio_s2_anno)
w_anno = int(w / ratio_s2_anno)
if interpolation1 == 'nearest':
interpolation1 = InterpolationMode.NEAREST
else:
interpolation1 = InterpolationMode.BICUBIC
if interpolation2 == 'nearest':
interpolation2 = InterpolationMode.NEAREST
else:
interpolation2 = InterpolationMode.BICUBIC
# import pdb;pdb.set_trace()
if self.scale[0]>0.99 and self.scale[0]<1.0:
if self.mode=='small':
resized_s2_img = F.resize(s2_img, (16,16), interpolation=InterpolationMode.BICUBIC)
resized_hr_img = F.resize(hr_img, (512, 512), interpolation=InterpolationMode.BICUBIC)
resized_s1_img = F.resize(s1_img, (16,16), interpolation=InterpolationMode.BICUBIC)
resized_tgt = F.resize(tgt, (512,512), interpolation=InterpolationMode.NEAREST)
else:
resized_s2_img = F.resize(s2_img, (64,64), interpolation=InterpolationMode.BICUBIC)
resized_hr_img = F.resize(hr_img, (2048, 2048), interpolation=InterpolationMode.BICUBIC)
resized_s1_img = F.resize(s1_img, (64,64), interpolation=InterpolationMode.BICUBIC)
resized_tgt = F.resize(tgt, (2048,2048), interpolation=InterpolationMode.NEAREST)
return resized_hr_img, resized_s2_img, resized_s1_img, resized_tgt
if self.mode=='small':
resized_s2_img = F.resized_crop(s2_img, i, j, h, w, (16, 16), InterpolationMode.BICUBIC)
resized_hr_img = F.resized_crop(hr_img, i_hr, j_hr, h_hr, w_hr, (512, 512), InterpolationMode.BICUBIC)
resized_s1_img = F.resized_crop(s1_img, i, j, h, w, (16, 16), InterpolationMode.BICUBIC)
resized_tgt = F.resized_crop(tgt, i_anno, j_anno, h_anno, w_anno, (512, 512), InterpolationMode.NEAREST)
else:
resized_s2_img = F.resized_crop(s2_img, i, j, h, w, (512, 512), InterpolationMode.BICUBIC)
resized_hr_img = F.resized_crop(hr_img, i_hr, j_hr, h_hr, w_hr, (2048,2048), InterpolationMode.BICUBIC)
resized_s1_img = F.resized_crop(s1_img, i, j, h, w, (512, 512), InterpolationMode.BICUBIC)
resized_tgt = F.resized_crop(tgt, i_anno, j_anno, h_anno, w_anno, (2048, 2048), InterpolationMode.NEAREST)
# import pdb; pdb.set_trace()
# 将resize后的结果保存为concat的img
# self.cnt = self.cnt+1
# from torchvision.utils import save_image
# save_hr = resized_hr_img[:3, :, :] / resized_hr_img[:3, :, :].max()
# save_s2 = resized_s2_img[:3,0,:,:] / resized_s2_img[:3,0,:,:].max()
# print(f'{save_hr.shape}, {save_s2.shape}')
# save_image(save_s2, f'FoundationModel/debug/output2/resized_s2_{self.cnt}.png')
# save_image(save_hr, f'FoundationModel/debug/output2/resized_hr_{self.cnt}.png')
return resized_hr_img, resized_s2_img, resized_s1_img, resized_tgt
class RandomResizedCropComb(transforms.RandomResizedCrop):
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation=InterpolationMode.BILINEAR,
):
super().__init__(size, scale=scale, ratio=ratio, interpolation=interpolation)
self.cnt=0
def forward(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
img (PIL Image or Tensor): Image to be cropped and resized.
Returns:
PIL Image or Tensor: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(s2_img, self.scale, self.ratio)
# print(f'i, j, h, w: {i, j, h, w}')
# print(f's2_img shape: {s2_img.shape}')
size_hr = hr_img.shape[-1]
size_s2 = s2_img.shape[-1]
size_anno = tgt.shape[-1]
# 映射到其他模态
ratio_s2_hr = size_s2 / size_hr
i_hr = int(i / ratio_s2_hr)
j_hr = int(j / ratio_s2_hr)
h_hr = int(h / ratio_s2_hr)
w_hr = int(w / ratio_s2_hr)
ratio_s2_anno = size_s2 / size_anno
i_anno = int(i / ratio_s2_anno)
j_anno = int(j / ratio_s2_anno)
h_anno = int(h / ratio_s2_anno)
w_anno = int(w / ratio_s2_anno)
if interpolation1 == 'nearest':
interpolation1 = InterpolationMode.NEAREST
else:
interpolation1 = InterpolationMode.BICUBIC
if interpolation2 == 'nearest':
interpolation2 = InterpolationMode.NEAREST
else:
interpolation2 = InterpolationMode.BICUBIC
resized_s2_img = F.resized_crop(s2_img, i, j, h, w, (32, 16), InterpolationMode.BICUBIC)
resized_hr_img = F.resized_crop(hr_img, i_hr, j_hr, h_hr, w_hr, (1024, 512), InterpolationMode.BICUBIC)
resized_s1_img = F.resized_crop(s1_img, i, j, h, w, (32, 16), InterpolationMode.BICUBIC)
resized_tgt = F.resized_crop(tgt, i_anno, j_anno, h_anno, w_anno, (1024, 512), InterpolationMode.NEAREST)
return resized_hr_img, resized_s2_img, resized_s1_img, resized_tgt
class RandomHorizontalFlip(transforms.RandomHorizontalFlip):
"""Horizontally flip the given image randomly with a given probability.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
super().__init__(p=p)
def forward(self, dataset_name, hr_img, s2_img, s1_img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
img (PIL Image or Tensor): Image to be flipped.
Returns:
PIL Image or Tensor: Randomly flipped image.
"""
if torch.rand(1) < self.p:
return F.hflip(hr_img), F.hflip(s2_img), F.hflip(s1_img), F.hflip(tgt)
return hr_img, s2_img, s1_img, tgt
class RandomApply(transforms.RandomApply):
"""Apply randomly a list of transformations with a given probability.
.. note::
In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
transforms as shown below:
>>> transforms = transforms.RandomApply(torch.nn.ModuleList([
>>> transforms.ColorJitter(),
>>> ]), p=0.3)
>>> scripted_transforms = torch.jit.script(transforms)
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
`lambda` functions or ``PIL.Image``.
Args:
transforms (sequence or torch.nn.Module): list of transformations
p (float): probability
"""
def __init__(self, transforms, p=0.5):
super().__init__(transforms, p=p)
def forward(self, img, tgt, interpolation1=None, interpolation2=None):
if self.p < torch.rand(1):
return img, tgt
for t in self.transforms:
img, tgt = t(img, tgt)
return img, tgt
class ColorJitter(transforms.ColorJitter):
"""Randomly change the brightness, contrast, saturation and hue of an image.
If the image is torch Tensor, it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
Args:
brightness (float or tuple of float (min, max)): How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast (float or tuple of float (min, max)): How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation (float or tuple of float (min, max)): How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue (float or tuple of float (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
To jitter hue, the pixel values of the input image has to be non-negative for conversion to HSV space;
thus it does not work if you normalize your image to an interval with negative values,
or use an interpolation that generates negative values before using this function.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
super().__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
def forward(self, img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
img (PIL Image or Tensor): Input image.
Returns:
PIL Image or Tensor: Color jittered image.
"""
fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
self.brightness, self.contrast, self.saturation, self.hue
)
for fn_id in fn_idx:
if fn_id == 0 and brightness_factor is not None:
img = F.adjust_brightness(img, brightness_factor)
elif fn_id == 1 and contrast_factor is not None:
img = F.adjust_contrast(img, contrast_factor)
elif fn_id == 2 and saturation_factor is not None:
img = F.adjust_saturation(img, saturation_factor)
elif fn_id == 3 and hue_factor is not None:
img = F.adjust_hue(img, hue_factor)
return img, tgt
class RandomErasing(transforms.RandomErasing):
"""Randomly selects a rectangle region in a torch.Tensor image and erases its pixels.
This transform does not support PIL Image.
'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
Args:
p: probability that the random erasing operation will be performed.
scale: range of proportion of erased area against input image.
ratio: range of aspect ratio of erased area.
value: erasing value. Default is 0. If a single int, it is used to
erase all pixels. If a tuple of length 3, it is used to erase
R, G, B channels respectively.
If a str of 'random', erasing each pixel with random values.
inplace: boolean to make this transform inplace. Default set to False.
Returns:
Erased Image.
Example:
>>> transform = transforms.Compose([
>>> transforms.RandomHorizontalFlip(),
>>> transforms.PILToTensor(),
>>> transforms.ConvertImageDtype(torch.float),
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>> transforms.RandomErasing(),
>>> ])
"""
def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
super().__init__(p=p, scale=scale, ratio=ratio, value=value, inplace=inplace)
def forward(self, img, tgt, interpolation1=None, interpolation2=None):
"""
Args:
img (Tensor): Tensor image to be erased.
Returns:
img (Tensor): Erased Tensor image.
"""
if torch.rand(1) < self.p:
# cast self.value to script acceptable type
if isinstance(self.value, (int, float)):
value = [self.value]
elif isinstance(self.value, str):
value = None
elif isinstance(self.value, tuple):
value = list(self.value)
else:
value = self.value
if value is not None and not (len(value) in (1, img.shape[-3])):
raise ValueError(
"If value is a sequence, it should have either a single value or "
f"{img.shape[-3]} (number of input channels)"
)
x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
return F.erase(img, x, y, h, w, v, self.inplace), tgt
return img, tgt
class GaussianBlur(object):
"""Gaussian blur augmentation from SimCLR: https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, img, tgt, interpolation1=None, interpolation2=None):
sigma = random.uniform(self.sigma[0], self.sigma[1])
img = img.filter(ImageFilter.GaussianBlur(radius=sigma))
return img, tgt
def __repr__(self) -> str:
s = f"{self.__class__.__name__}( sigma={self.sigma})"
return s

File diff suppressed because it is too large Load Diff