init
This commit is contained in:
0
lib/datasets/loader/__init__.py
Normal file
0
lib/datasets/loader/__init__.py
Normal file
289
lib/datasets/loader/few_shot_flood3i_loader.py
Normal file
289
lib/datasets/loader/few_shot_flood3i_loader.py
Normal file
@@ -0,0 +1,289 @@
|
||||
import os
|
||||
import json
|
||||
import datetime
|
||||
import random
|
||||
import itertools
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from antmmf.structures import Sample
|
||||
from antmmf.datasets.base_dataset import BaseDataset
|
||||
from antmmf.common import Configuration
|
||||
|
||||
from lib.datasets.utils.transforms import Compose, MSNormalize
|
||||
from lib.datasets.utils.formatting import ToTensor
|
||||
import lib.datasets.utils.pair_trainsforms as pair_transforms
|
||||
|
||||
from skimage import io
|
||||
from osgeo import gdal
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class FewShotFloodLoader(BaseDataset):
|
||||
DATASET_NAME = "few_shot_flood_loader"
|
||||
|
||||
def __init__(self, dataset_type, config):
|
||||
super().__init__(self.__class__.DATASET_NAME, dataset_type, config)
|
||||
if dataset_type == 'train':
|
||||
raise ValueError('train mode not support!!!')
|
||||
|
||||
self.root = config.data_root_dir
|
||||
self.dataset_type = dataset_type
|
||||
self.img_dir = config.img_dir
|
||||
self.tgt_dir = config.tgt_dir
|
||||
with open(config.data_txt, 'r') as f:
|
||||
test_list = f.readlines()
|
||||
self.test_pairs = []
|
||||
self.cls2path = {}
|
||||
for i in test_list:
|
||||
i = i.strip()
|
||||
if i == '':
|
||||
continue
|
||||
img_path = i[:-3]
|
||||
cls = int(i[-2:])
|
||||
cls = int(cls)
|
||||
self.test_pairs.append(
|
||||
{'hr_path': img_path,
|
||||
'class': cls,
|
||||
'tgt_path': img_path.replace('_', '_lab_', 1).replace('.jpg', '.png')
|
||||
})
|
||||
if cls in self.cls2path.keys():
|
||||
self.cls2path[cls].append({'hr_path': img_path, 'tgt_path': img_path.replace('_', '_lab_', 1).replace('.jpg', '.png'), 'class': cls})
|
||||
else:
|
||||
self.cls2path[cls] = [{'hr_path': img_path, 'tgt_path': img_path.replace('_', '_lab_', 1).replace('.jpg', '.png'), 'class': cls}]
|
||||
|
||||
self.seq_len = config.seq_len # ts
|
||||
self.hr_size = config.image_size.hr
|
||||
self.s2_size = config.image_size.s2
|
||||
self.s1_size = config.image_size.s1
|
||||
self.anno_size = config.image_size.anno
|
||||
self.imagenet_mean = torch.tensor([0.485, 0.456, 0.406])
|
||||
self.imagenet_std = torch.tensor([0.229, 0.224, 0.225]) # 先不管
|
||||
self.config = config
|
||||
self.pipeline = self._get_pipline()
|
||||
# self.crop_resize = pair_transforms.RandomResizedCropComb(512, scale=(0.99, 1.0), interpolation=3)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.test_pairs)
|
||||
|
||||
def _combine_two_images(self, image, image2):
|
||||
dst = torch.cat([image, image2], dim=-2)
|
||||
return dst
|
||||
|
||||
def _get_pipline(self):
|
||||
if self.dataset_type == 'val' or self.dataset_type == 'test':
|
||||
pipeline = [
|
||||
pair_transforms.ToTensor(),
|
||||
pair_transforms.RandomResizedCrop(512, scale=(0.9999, 1.0), interpolation=3),
|
||||
pair_transforms.Normalize(),
|
||||
]
|
||||
else:
|
||||
raise ValueError('dataset_type not support')
|
||||
return pair_transforms.Compose(pipeline)
|
||||
|
||||
def _load_data(self, data_path):
|
||||
file_name, file_extension = os.path.splitext(data_path)
|
||||
if file_extension == '.npz' or file_extension == '.npy':
|
||||
npz_key = self.config.get('npz_key', 'image')
|
||||
data = np.load(data_path)[npz_key]
|
||||
elif file_extension == '.png' or file_extension == '.jpg':
|
||||
data = io.imread(data_path)
|
||||
if len(data.shape) == 3:
|
||||
data = data.transpose(2, 0, 1)
|
||||
elif file_extension == '.tiff' or file_extension == '.tif':
|
||||
dataset = gdal.Open(data_path)
|
||||
if dataset is None:
|
||||
raise IOError(f'can not open file: {data_path}')
|
||||
data = dataset.ReadAsArray()
|
||||
dataset = None
|
||||
else:
|
||||
raise ValueError(f'file type {data_path} not support')
|
||||
# check nan
|
||||
if np.isnan(data).any():
|
||||
print(f'{data_path} with nan, replace it to 0!')
|
||||
data[np.isnan(data)] = 0
|
||||
return data
|
||||
|
||||
def load_s2(self, pair):
|
||||
if 'l8_path' in pair.keys():
|
||||
pair['s2_path'] = pair['l8_path']
|
||||
|
||||
if 's2_path' in pair.keys() and not self.config.get('masking_s2', False):
|
||||
with_s2 = True
|
||||
if isinstance(pair['s2_path'], list):
|
||||
if True: # len(pair['s2_path']) > self.seq_len:
|
||||
s2_path_list = np.random.choice(pair['s2_path'], self.seq_len)
|
||||
s2_path_list = sorted(s2_path_list)
|
||||
else:
|
||||
s2_path_list = pair['s2_path']
|
||||
s2_list = []
|
||||
s2_ct_1 = []
|
||||
for s2_path in s2_path_list:
|
||||
s2 = self._load_data(os.path.join(self.root, s2_path)) # [:10]
|
||||
s2_list.append(s2)
|
||||
ct = os.path.splitext(s2_path)[0].split('_')
|
||||
ct = ct[3] # + ct[-3] + '01'
|
||||
try:
|
||||
ct = datetime.datetime.strptime(ct, '%Y%m%d')
|
||||
except:
|
||||
ct = datetime.datetime.strptime(ct, '%Y-%m-%d')
|
||||
ct = ct.timetuple()
|
||||
ct = ct.tm_yday - 1
|
||||
s2_ct_1.append(ct)
|
||||
s2_1 = np.stack(s2_list, axis=1)
|
||||
|
||||
else:
|
||||
|
||||
s2 = np.load(os.path.join(self.root, pair['s2_path']))['image']
|
||||
date = np.load(os.path.join(self.root, pair['s2_path']))['date']
|
||||
if True: # s2.shape[0] > self.seq_len:
|
||||
selected_indices = np.random.choice(s2.shape[0], size=self.seq_len, replace=False)
|
||||
selected_indices = sorted(selected_indices)
|
||||
s2 = s2[selected_indices, :, :, :]
|
||||
date = date[selected_indices]
|
||||
s2_1 = s2.transpose(1, 0, 2, 3) # ts, c, h, w -> c, ts, h, w
|
||||
s2_ct_1 = []
|
||||
for ct in date:
|
||||
try:
|
||||
ct = datetime.datetime.strptime(ct, '%Y%m%d')
|
||||
except:
|
||||
ct = datetime.datetime.strptime(ct, '%Y-%m-%d')
|
||||
ct = ct.timetuple()
|
||||
ct = ct.tm_yday - 1
|
||||
s2_ct_1.append(ct)
|
||||
|
||||
else:
|
||||
with_s2 = False
|
||||
s2_1 = np.zeros((10, self.seq_len, self.s2_size[0], self.s2_size[1]),
|
||||
dtype=np.int16)
|
||||
s2_ct_1 = [0] * self.seq_len
|
||||
|
||||
return with_s2, s2_1, s2_ct_1
|
||||
|
||||
def load_s1(self, pair):
|
||||
if 's1_path' in pair.keys():
|
||||
with_s1 = True
|
||||
if isinstance(pair['s1_path'], list):
|
||||
if True: # len(pair['s1_path']) > self.seq_len:
|
||||
s1_path_list = np.random.choice(pair['s1_path'], self.seq_len)
|
||||
s1_path_list = sorted(s1_path_list)
|
||||
else:
|
||||
s1_path_list = pair['s1_path']
|
||||
s1_list = []
|
||||
for s1_path in s1_path_list:
|
||||
s1 = self._load_data(os.path.join(self.root, s1_path))
|
||||
s1_list.append(s1)
|
||||
s1_1 = np.stack(s1_list, axis=1)
|
||||
else:
|
||||
s1 = self._load_data(os.path.join(self.root, pair['s1_path']))
|
||||
if True: # s1.shape[0] > self.seq_len:
|
||||
selected_indices = np.random.choice(s1.shape[0], size=self.seq_len, replace=False)
|
||||
selected_indices = sorted(selected_indices)
|
||||
s1 = s1[selected_indices, :, :, :]
|
||||
s1_1 = s1.transpose(1, 0, 2, 3) # ts, c, h, w -> c, ts, h, w
|
||||
else:
|
||||
with_s1 = False
|
||||
s1_1 = np.zeros((2, self.seq_len, self.s1_size[0], self.s1_size[1]),
|
||||
dtype=np.float32)
|
||||
return with_s1, s1_1
|
||||
|
||||
def load_hr(self, pair):
|
||||
if 'hr_path' in pair.keys():
|
||||
with_hr = True
|
||||
hr = self._load_data(os.path.join(self.root, pair['hr_path']))
|
||||
else:
|
||||
with_hr = False
|
||||
hr = np.zeros((3, self.hr_size[0], self.hr_size[1]),
|
||||
dtype=np.uint8)
|
||||
return with_hr, hr
|
||||
|
||||
def load_tgt(self, pair):
|
||||
targets = self._load_data(os.path.join(self.root, pair['target_path']))
|
||||
return targets
|
||||
|
||||
def get_item(self, idx):
|
||||
pair = self.test_pairs[idx]
|
||||
test_class = pair['class']
|
||||
|
||||
current_dataset = 'flood3i'
|
||||
with_hr = True
|
||||
with_s2 = False
|
||||
with_s1 = False
|
||||
|
||||
input_hr = io.imread(os.path.join(self.img_dir, pair['hr_path']))
|
||||
input_hr = input_hr.transpose(2,0,1)
|
||||
_, input_s2,_ = self.load_s2(pair)
|
||||
_, input_s1 = self.load_s1(pair)
|
||||
input_tgt = io.imread(os.path.join(self.tgt_dir, pair['tgt_path']))
|
||||
modality_dict = {
|
||||
's2': with_s2,
|
||||
's1': with_s1,
|
||||
'hr': with_hr
|
||||
}
|
||||
|
||||
|
||||
input_tgt[input_tgt != test_class] = 0
|
||||
input_tgt[input_tgt == test_class] = 255
|
||||
input_tgt = np.concatenate((input_tgt[None, :,:],)*3, axis=0)
|
||||
input_hr, input_s2, input_s1, input_tgt = self.pipeline(current_dataset, input_hr, input_s2, input_s1,
|
||||
input_tgt)
|
||||
|
||||
while True:
|
||||
sel_prompt = random.choice(self.cls2path[test_class])
|
||||
if sel_prompt['hr_path'] != pair['hr_path']:
|
||||
break
|
||||
prompt_hr = io.imread(os.path.join(self.img_dir, sel_prompt['hr_path']))
|
||||
prompt_hr = prompt_hr.transpose(2,0,1)
|
||||
_, prompt_s2,_ = self.load_s2(pair)
|
||||
_, prompt_s1 = self.load_s1(pair)
|
||||
prompt_tgt = io.imread(os.path.join(self.tgt_dir, sel_prompt['tgt_path']))
|
||||
|
||||
prompt_tgt[prompt_tgt != test_class] = 0
|
||||
prompt_tgt[prompt_tgt == test_class] = 255
|
||||
prompt_tgt = np.concatenate((prompt_tgt[None, :,:],)*3, axis=0)
|
||||
|
||||
prompt_hr, prompt_s2, prompt_s1, prompt_tgt = self.pipeline(current_dataset, prompt_hr, prompt_s2, prompt_s1, prompt_tgt)
|
||||
|
||||
targets_comb = self._combine_two_images(prompt_tgt, input_tgt)
|
||||
hr_comb = self._combine_two_images(prompt_hr, input_hr)
|
||||
s2_comb = self._combine_two_images(prompt_s2, input_s2)
|
||||
s1_comb = self._combine_two_images(prompt_s1, input_s1)
|
||||
|
||||
valid = torch.ones_like(targets_comb)
|
||||
thres = torch.ones(3) * 1e-5 # ignore black
|
||||
thres = (thres - self.imagenet_mean) / self.imagenet_std
|
||||
valid[targets_comb < thres[:, None, None]] = 0
|
||||
|
||||
mask_shape = (int(self.config.mim.input_size[0] / self.config.mim.patch_size),
|
||||
int(self.config.mim.input_size[1] / self.config.mim.patch_size))
|
||||
mask = np.zeros(mask_shape, dtype=np.int32)
|
||||
mask[mask.shape[0] // 2:, :] = 1
|
||||
|
||||
geo_location = pair["location"] if "location" in pair.keys() else None
|
||||
|
||||
modality_idx = 2 ** 0 * modality_dict['s2'] + 2 ** 1 * modality_dict['s1'] + 2 ** 2 * modality_dict['hr']
|
||||
modality_flag_s2 = modality_dict['s2']
|
||||
modality_flag_s1 = modality_dict['s1']
|
||||
modality_flag_hr = modality_dict['hr']
|
||||
|
||||
current_sample = Sample()
|
||||
current_sample.img_name = pair["tgt_path"].split('/')[-1].split('.')[0] + '-' +str(test_class)
|
||||
current_sample.hr_img = hr_comb
|
||||
current_sample.dataset_name = 'flood3i'
|
||||
current_sample.targets = targets_comb
|
||||
current_sample.s2_img = s2_comb
|
||||
current_sample.s2_ct = -1
|
||||
current_sample.s2_ct2 = -1
|
||||
current_sample.s1_img = s1_comb
|
||||
current_sample.anno_mask = torch.from_numpy(mask)
|
||||
current_sample.valid = valid
|
||||
current_sample.location = geo_location
|
||||
current_sample.modality_idx = modality_idx
|
||||
current_sample.modality_flag_s2 = modality_flag_s2
|
||||
current_sample.modality_flag_s1 = modality_flag_s1
|
||||
current_sample.modality_flag_hr = modality_flag_hr
|
||||
current_sample.task_type = self.dataset_type
|
||||
return current_sample
|
||||
494
lib/datasets/loader/pretraining_loader.py
Normal file
494
lib/datasets/loader/pretraining_loader.py
Normal file
@@ -0,0 +1,494 @@
|
||||
import os
|
||||
import json
|
||||
import datetime
|
||||
import random
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from osgeo import gdal
|
||||
from skimage import io
|
||||
from skimage.transform import resize
|
||||
|
||||
from antmmf.structures import Sample
|
||||
from antmmf.datasets.base_dataset import BaseDataset
|
||||
|
||||
import lib.datasets.utils.pair_trainsforms as pair_transforms
|
||||
from lib.datasets.utils.masking_generator import MaskingGenerator
|
||||
from lib.datasets.utils.dataset_colors import dataset_color_dict, get_painter_color_map_list, get_real_random_color_list
|
||||
|
||||
|
||||
class PretrainingLoader(BaseDataset):
|
||||
DATASET_NAME = "pretraining_loader"
|
||||
|
||||
def __init__(self, dataset_type, config):
|
||||
super().__init__(self.__class__.DATASET_NAME, dataset_type, config)
|
||||
self.root = config.data_root_dir
|
||||
if dataset_type == 'train':
|
||||
self.json_path_list = config.train_json_path_list
|
||||
if dataset_type == 'val':
|
||||
self.json_path_list = config.val_json_path_list
|
||||
if dataset_type == 'test':
|
||||
self.json_path_list = config.val_json_path_list
|
||||
self.dataset_type = dataset_type
|
||||
self.pairs = []
|
||||
self.cls_repeat_cnt = config.cls_repeat_cnt
|
||||
num_datasets = len(self.json_path_list)
|
||||
for idx, json_path in enumerate(self.json_path_list):
|
||||
print(os.path.join(config.data_root_dir, json_path))
|
||||
cur_pairs = json.load(open(os.path.join(config.data_root_dir, json_path)))
|
||||
self.pairs.extend(cur_pairs)
|
||||
cur_num = len(cur_pairs)
|
||||
|
||||
if dataset_type == 'test' and config.prompt_json:
|
||||
cur_pairs = json.load(open(config.prompt_json))
|
||||
self.prompt = cur_pairs[0]
|
||||
print(f'prompt:{self.prompt}')
|
||||
|
||||
self.use_multi_pairs = config.use_multi_pairs
|
||||
|
||||
if self.use_multi_pairs:
|
||||
self.pair_type_dict = {}
|
||||
if dataset_type == 'train' or dataset_type == 'val':
|
||||
for idx, pair in enumerate(self.pairs):
|
||||
if pair["type"] not in self.pair_type_dict:
|
||||
new_subset = {}
|
||||
classes = pair["classes"]
|
||||
for cls in classes:
|
||||
if cls not in new_subset.keys():
|
||||
new_subset[cls] = [idx]
|
||||
else:
|
||||
new_subset[cls].append(idx)
|
||||
self.pair_type_dict[pair["type"]] = new_subset
|
||||
else:
|
||||
classes = pair["classes"]
|
||||
for cls in classes:
|
||||
if cls not in self.pair_type_dict[pair["type"]].keys():
|
||||
self.pair_type_dict[pair["type"]][cls] = [idx]
|
||||
else:
|
||||
self.pair_type_dict[pair["type"]][cls].append(idx)
|
||||
|
||||
cnt = 0
|
||||
self.idx_to_cls = {}
|
||||
for k, v in self.pair_type_dict.items():
|
||||
for vv in v:
|
||||
self.idx_to_cls[cnt] = {
|
||||
'type': k,
|
||||
'classes_id': vv
|
||||
}
|
||||
cnt = cnt + 1
|
||||
|
||||
print(self.idx_to_cls)
|
||||
self.idx_to_cls_list = []
|
||||
for i in self.idx_to_cls.keys():
|
||||
self.idx_to_cls_list.append(self.idx_to_cls[i])
|
||||
print(self.idx_to_cls_list)
|
||||
if self.dataset_type == 'train':
|
||||
self.idx_to_cls_list = self.idx_to_cls_list * self.cls_repeat_cnt
|
||||
self.masked_position_generator = MaskingGenerator(
|
||||
input_size=config.mim.input_size,
|
||||
patch_size=config.mim.patch_size,
|
||||
mask_ratio=config.mim.mask_ratio
|
||||
)
|
||||
if dataset_type == 'train':
|
||||
self.half_mask_ratio = config.half_mask_ratio
|
||||
else:
|
||||
self.half_mask_ratio = 1.
|
||||
|
||||
self.seq_len = config.seq_len # ts
|
||||
self.hr_size = config.image_size.hr
|
||||
self.s2_size = config.image_size.s2
|
||||
self.s1_size = config.image_size.s1
|
||||
self.anno_size = config.image_size.anno
|
||||
self.min_random_scale = config.min_random_scale
|
||||
self.imagenet_mean=torch.tensor([0.485, 0.456, 0.406])
|
||||
self.imagenet_std=torch.tensor([0.229, 0.224, 0.225])
|
||||
|
||||
self.pipeline = self._get_pipline()
|
||||
self.crop_resize = pair_transforms.RandomResizedCropComb(512, scale=(0.3, 1.0), interpolation=3)
|
||||
self.num_samples = 8
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.idx_to_cls_list)
|
||||
|
||||
def _convert_colors_pairs(self, images, original_colors, new_colors, current_color):
|
||||
if len(original_colors) != len(new_colors):
|
||||
raise ValueError("The length of original_colors and new_colors must be the same.")
|
||||
unique_colors_list = []
|
||||
for image in images:
|
||||
if len(image.shape) == 3:
|
||||
image_hwc = image.transpose(1,2,0) # chw -> hwc
|
||||
elif len(image.shape) == 2:
|
||||
image_hwc = image[:,:,None]
|
||||
else:
|
||||
raise ValueError('image shape is {image_hwc.shape}, which is not support to change color!')
|
||||
|
||||
image_2d = image_hwc.reshape(-1, image_hwc.shape[-1])
|
||||
unique_colors = np.unique(image_2d, axis=0)
|
||||
unique_colors_list.append(unique_colors)
|
||||
unique_colors_list.append(original_colors)
|
||||
|
||||
sets_of_tuples = [set(map(tuple, a)) for a in unique_colors_list]
|
||||
common_tuples = set.intersection(*sets_of_tuples)
|
||||
unique_old_colors = np.array(list(common_tuples), dtype=np.uint8)
|
||||
if len(unique_old_colors) == 0:
|
||||
unique_old_colors = [current_color]
|
||||
new_colors_coverted = new_colors[:len(unique_old_colors)]
|
||||
images_converted_list = []
|
||||
|
||||
for image in images:
|
||||
image_convered = self._convert_colors(image, unique_old_colors, new_colors_coverted)
|
||||
images_converted_list.append(image_convered)
|
||||
|
||||
return images_converted_list
|
||||
|
||||
def _convert_colors(self, image, original_colors, new_colors):
|
||||
"""
|
||||
Remap colors in an image to new colors.
|
||||
|
||||
Parameters:
|
||||
image (numpy.ndarray): The image as a numpy array (channel x height x width).
|
||||
original_colors (list of tuples): The list of original colors to be replaced.
|
||||
new_colors (list of tuples): The list of new colors to replace the original colors.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: The image with remapped colors. (channel x height x width)
|
||||
"""
|
||||
|
||||
if len(original_colors) != len(new_colors):
|
||||
raise ValueError("The length of original_colors and new_colors must be the same.")
|
||||
|
||||
# Convert lists of tuples to numpy arrays for faster processing
|
||||
original_colors = np.array(original_colors)
|
||||
new_colors = np.array(new_colors)
|
||||
if len(original_colors.shape) == 1:
|
||||
original_colors = original_colors[:,None]
|
||||
|
||||
# check image shape
|
||||
if len(image.shape) == 3:
|
||||
remapped_image = image.transpose(1,2,0) # chw -> hwc
|
||||
elif len(image.shape) == 2:
|
||||
remapped_image = image[:,:,None]
|
||||
else:
|
||||
raise ValueError('image shape is {image.shape}, which is not support to change color!')
|
||||
|
||||
# generate new image for return
|
||||
new_image = np.zeros((remapped_image.shape[0], remapped_image.shape[1], 3), dtype=np.uint8)
|
||||
|
||||
for orig_color, new_color in zip(original_colors, new_colors):
|
||||
mask = np.all(remapped_image == orig_color, axis=-1)
|
||||
new_image[mask] = new_color
|
||||
|
||||
new_image = new_image.transpose(2,0,1) # hwc -> chw
|
||||
return new_image
|
||||
|
||||
def _combine_images(self, images, interpolation='bicubic'):
|
||||
# images 8, c, h, w -> c, 4h, 2w
|
||||
group1 = images[:4]
|
||||
group2 = images[4:]
|
||||
stacked1 = torch.cat(group1, dim=-2)
|
||||
stacked2 = torch.cat(group2, dim=-2)
|
||||
result = torch.cat((stacked1, stacked2), dim=-1)
|
||||
|
||||
return result
|
||||
|
||||
def _get_pipline(self):
|
||||
if self.dataset_type == 'train':
|
||||
pipeline = [
|
||||
pair_transforms.ToTensor(),
|
||||
pair_transforms.RandomResizedCrop(512, scale=(0.8, 1.0), interpolation=3), # 3 is bicubic
|
||||
pair_transforms.RandomHorizontalFlip(),
|
||||
pair_transforms.Normalize(),
|
||||
]
|
||||
elif self.dataset_type == 'val' or self.dataset_type == 'test':
|
||||
pipeline = [
|
||||
pair_transforms.ToTensor(),
|
||||
pair_transforms.RandomResizedCrop(512, scale=(0.9999, 1.0), interpolation=3), # 3 is bicubic
|
||||
pair_transforms.Normalize(),
|
||||
]
|
||||
else:
|
||||
raise ValueError('dataset_type not support')
|
||||
return pair_transforms.Compose(pipeline)
|
||||
|
||||
def _load_data(self, data_path):
|
||||
file_name, file_extension = os.path.splitext(data_path)
|
||||
if file_extension == '.npz' or file_extension == '.npy':
|
||||
data = np.load(data_path)['image']
|
||||
elif file_extension == '.png' or file_extension == '.jpg':
|
||||
data = io.imread(data_path)
|
||||
if len(data.shape) == 3:
|
||||
data = data.transpose(2,0,1)
|
||||
elif file_extension == '.tiff' or file_extension == '.tif':
|
||||
dataset = gdal.Open(data_path)
|
||||
if dataset is None:
|
||||
raise IOError(f'无法打开文件{data_path}')
|
||||
data = dataset.ReadAsArray()
|
||||
dataset = None
|
||||
else:
|
||||
raise ValueError(f'file type {data_path} not support')
|
||||
if np.isnan(data).any():
|
||||
print(f'{data_path} with nan, replace it to 0!')
|
||||
data[np.isnan(data)] = 0
|
||||
return data
|
||||
|
||||
def load_s2(self, pair):
|
||||
if pair['type'] == 'flair-mm' and 's2_path' in pair.keys():
|
||||
with_s2 =True
|
||||
s2 = np.load(os.path.join(self.root, pair['s2_path']))
|
||||
idx_centroid = pair['s2_cut_points']
|
||||
s2_patch_size = 40
|
||||
subset_sp = s2[:,:,idx_centroid[0]-int(s2_patch_size/2):idx_centroid[0] + \
|
||||
int(s2_patch_size/2),idx_centroid[1] - int(s2_patch_size/2):idx_centroid[1] + \
|
||||
int(s2_patch_size/2)]
|
||||
ts, c, h, w = subset_sp.shape
|
||||
subset_sp = subset_sp.reshape(-1, h, w).transpose(1,2,0)
|
||||
s2 = resize(subset_sp, (16, 16), anti_aliasing=True).transpose(2,0,1)
|
||||
s2 = s2.reshape(ts, c, 16, 16)
|
||||
if True:
|
||||
selected_indices = np.random.choice(s2.shape[0], size=self.seq_len, replace=False)
|
||||
selected_indices = sorted(selected_indices)
|
||||
s2 = s2[selected_indices, :, :, :]
|
||||
|
||||
s2_1 = s2.transpose(1,0,2,3) # ts, c, h, w -> c, ts, h, w
|
||||
s2_ct_1 = [0] * self.seq_len
|
||||
|
||||
elif 's2_path' in pair.keys():
|
||||
with_s2 =True
|
||||
if isinstance(pair['s2_path'], list):
|
||||
if True:
|
||||
s2_path_list = np.random.choice(pair['s2_path'], self.seq_len)
|
||||
s2_path_list = sorted(s2_path_list)
|
||||
else:
|
||||
s2_path_list = pair['s2_path']
|
||||
s2_list = []
|
||||
s2_ct_1 = []
|
||||
for s2_path in s2_path_list:
|
||||
s2 = self._load_data(os.path.join(self.root, s2_path))#[:10]
|
||||
s2_list.append(s2)
|
||||
ct = os.path.splitext(s2_path)[0].split('_')
|
||||
ct = ct[-4] + ct[-3] + '01'
|
||||
try:
|
||||
ct = datetime.datetime.strptime(ct, '%Y%m%d')
|
||||
except:
|
||||
ct = datetime.datetime.strptime(ct, '%Y-%m-%d')
|
||||
ct = ct.timetuple()
|
||||
ct = ct.tm_yday - 1
|
||||
s2_ct_1.append(ct)
|
||||
s2_1 = np.stack(s2_list, axis=1)
|
||||
|
||||
else:
|
||||
s2 = np.load(os.path.join(self.root, pair['s2_path']))['image']
|
||||
date = np.load(os.path.join(self.root, pair['s2_path']))['date']
|
||||
if True:
|
||||
selected_indices = np.random.choice(s2.shape[0], size=self.seq_len, replace=False)
|
||||
selected_indices = sorted(selected_indices)
|
||||
s2 = s2[selected_indices, :, :, :]
|
||||
date = date[selected_indices]
|
||||
s2_1 = s2.transpose(1,0,2,3) # ts, c, h, w -> c, ts, h, w
|
||||
s2_ct_1 = []
|
||||
for ct in date:
|
||||
try:
|
||||
ct = datetime.datetime.strptime(ct, '%Y%m%d')
|
||||
except:
|
||||
ct = datetime.datetime.strptime(ct, '%Y-%m-%d')
|
||||
ct = ct.timetuple()
|
||||
ct = ct.tm_yday - 1
|
||||
s2_ct_1.append(ct)
|
||||
else:
|
||||
with_s2 = False
|
||||
s2_1 = np.zeros((10, self.seq_len, self.s2_size[0], self.s2_size[1]),
|
||||
dtype=np.int16)
|
||||
s2_ct_1 = [0] * self.seq_len
|
||||
|
||||
return with_s2, s2_1, s2_ct_1
|
||||
|
||||
def load_s1(self, pair):
|
||||
if 's1_path' in pair.keys():
|
||||
with_s1 = True
|
||||
if isinstance(pair['s1_path'], list):
|
||||
if True:
|
||||
s1_path_list = np.random.choice(pair['s1_path'], self.seq_len)
|
||||
s1_path_list = sorted(s1_path_list)
|
||||
else:
|
||||
s1_path_list = pair['s1_path']
|
||||
s1_list = []
|
||||
for s1_path in s1_path_list:
|
||||
s1 = self._load_data(os.path.join(self.root, s1_path))
|
||||
s1_list.append(s1)
|
||||
s1_1 = np.stack(s1_list, axis=1)
|
||||
else:
|
||||
s1 = self._load_data(os.path.join(self.root, pair['s1_path']))
|
||||
if True:
|
||||
selected_indices = np.random.choice(s1.shape[0], size=self.seq_len, replace=False)
|
||||
selected_indices = sorted(selected_indices)
|
||||
s1 = s1[selected_indices, :, :, :]
|
||||
s1_1 = s1.transpose(1,0,2,3) # ts, c, h, w -> c, ts, h, w
|
||||
else:
|
||||
with_s1 = False
|
||||
s1_1 = np.zeros((2, self.seq_len, self.s1_size[0], self.s1_size[1]),
|
||||
dtype=np.float32)
|
||||
return with_s1, s1_1
|
||||
|
||||
def load_hr(self, pair):
|
||||
if 'hr_path' in pair.keys():
|
||||
if pair['type'] == 'flair-mm':
|
||||
with_hr = True
|
||||
hr = self._load_data(os.path.join(self.root, pair['hr_path']))[:3,:,:]
|
||||
else:
|
||||
with_hr = True
|
||||
hr = self._load_data(os.path.join(self.root, pair['hr_path']))
|
||||
else:
|
||||
with_hr = False
|
||||
hr = np.zeros((3, self.hr_size[0], self.hr_size[1]),
|
||||
dtype=np.uint8)
|
||||
return with_hr, hr
|
||||
|
||||
def load_tgt(self, pair):
|
||||
if self.dataset_type == 'test':
|
||||
targets = np.zeros((3, self.anno_size[0], self.anno_size[1]),
|
||||
dtype=np.uint8)
|
||||
else:
|
||||
targets = self._load_data(os.path.join(self.root, pair['target_path']))
|
||||
return targets
|
||||
|
||||
def find_random_position(self, matrix, current_color):
|
||||
if matrix.ndim == 2:
|
||||
matrix = matrix[None, :, :]
|
||||
current_color = np.array(current_color)
|
||||
C, H, W = matrix.shape
|
||||
|
||||
if len(current_color) != C:
|
||||
raise ValueError("current_color unmatch with matrix!")
|
||||
|
||||
matches = np.where(np.all(matrix == current_color[:, None, None], axis=0))
|
||||
|
||||
if len(matches[0]) > 0:
|
||||
index = np.random.choice(range(len(matches[0])))
|
||||
return (matches[0][index], matches[1][index])
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_item(self, idx):
|
||||
dataset_cls_infos = self.idx_to_cls_list[idx]
|
||||
current_dataset = dataset_cls_infos['type']
|
||||
current_classes_id = dataset_cls_infos['classes_id']
|
||||
pair_idx_list = self.pair_type_dict[current_dataset][current_classes_id]
|
||||
|
||||
old_colors = dataset_color_dict[current_dataset]
|
||||
current_color = old_colors[current_classes_id]
|
||||
class_num = len(old_colors)
|
||||
if self.dataset_type == 'train':
|
||||
new_colors = get_real_random_color_list(class_num)
|
||||
else:
|
||||
new_colors = get_painter_color_map_list(class_num) # fix colors mapping when testing
|
||||
|
||||
num_samples = self.num_samples
|
||||
if len(pair_idx_list) < num_samples:
|
||||
selected_samples = [random.choice(pair_idx_list) for _ in range(num_samples)]
|
||||
else:
|
||||
selected_samples = random.sample(pair_idx_list, num_samples)
|
||||
hr_imgs = []
|
||||
tgt_imgs = []
|
||||
s2_imgs = []
|
||||
s1_imgs = []
|
||||
s2_cts = []
|
||||
for sample_idx in selected_samples:
|
||||
pair = self.pairs[sample_idx]
|
||||
with_hr, hr = self.load_hr(pair)
|
||||
with_s2, s2, s2_ct_1 = self.load_s2(pair)
|
||||
with_s1, s1 = self.load_s1(pair)
|
||||
tgt = self.load_tgt(pair)
|
||||
modality_dict = {
|
||||
's2' : with_s2,
|
||||
's1' : with_s1,
|
||||
'hr' : with_hr
|
||||
}
|
||||
|
||||
if (hr.shape[-2:] != tuple(self.hr_size)) and (hr.shape[-2:] == tgt.shape[-2:]) and (self.hr_size == self.anno_size):
|
||||
point_pos = self.find_random_position(tgt, current_color)
|
||||
upper_left_raw = [point_pos[0] - self.hr_size[0] // 2, point_pos[1] - self.hr_size[1] // 2]
|
||||
upper_left = [i - i%32 + 16 for i in upper_left_raw]
|
||||
upper_left_sentinel = [i // 32 for i in upper_left_raw]
|
||||
upper_left[0] = np.clip(np.array(upper_left[0]), 0, hr.shape[-2] - self.hr_size[0])
|
||||
upper_left[1] = np.clip(np.array(upper_left[1]), 0, hr.shape[-1] - self.hr_size[1])
|
||||
|
||||
upper_left_sentinel[0] = np.clip(np.array(upper_left_sentinel[0]), 0, s1.shape[-2] - self.s1_size[0])
|
||||
upper_left_sentinel[1] = np.clip(np.array(upper_left_sentinel[1]), 0, s1.shape[-1] - self.s1_size[1])
|
||||
hr = hr[:, upper_left[0]:upper_left[0]+self.hr_size[0], upper_left[1]:upper_left[1]+self.hr_size[1]]
|
||||
if with_s1:
|
||||
s1 = s1[:, :, upper_left_sentinel[0]:upper_left_sentinel[0]+self.s1_size[0], upper_left_sentinel[1]:upper_left_sentinel[1]+self.s1_size[1]]
|
||||
if with_s2:
|
||||
s2 = s2[:, :, upper_left_sentinel[0]:upper_left_sentinel[0]+self.s2_size[0], upper_left_sentinel[1]:upper_left_sentinel[1]+self.s2_size[1]]
|
||||
if tgt.ndim == 3:
|
||||
tgt = tgt[:, upper_left[0]:upper_left[0]+self.hr_size[0], upper_left[1]:upper_left[1]+self.hr_size[1]]
|
||||
elif tgt.ndim == 2:
|
||||
tgt = tgt[upper_left[0]:upper_left[0]+self.hr_size[0], upper_left[1]:upper_left[1]+self.hr_size[1]]
|
||||
else:
|
||||
raise ValueError("tgt dim unsupport!")
|
||||
hr_imgs.append(hr)
|
||||
tgt_imgs.append(tgt)
|
||||
s2_imgs.append(s2)
|
||||
s1_imgs.append(s1)
|
||||
s2_cts.append(s2_ct_1)
|
||||
|
||||
|
||||
cvt_hr_imgs = []
|
||||
cvt_tgt_imgs = []
|
||||
cvt_s2_imgs = []
|
||||
cvt_s1_imgs = []
|
||||
|
||||
tgt_imgs = self._convert_colors_pairs(tgt_imgs, old_colors, new_colors, current_color)
|
||||
for i in range(len(tgt_imgs)):
|
||||
hr, s2, s1, tgt = self.pipeline(current_dataset, hr_imgs[i], s2_imgs[i], s1_imgs[i], tgt_imgs[i])
|
||||
cvt_hr_imgs.append(hr)
|
||||
cvt_s2_imgs.append(s2)
|
||||
cvt_s1_imgs.append(s1)
|
||||
cvt_tgt_imgs.append(tgt)
|
||||
|
||||
targets_comb = self._combine_images(cvt_tgt_imgs)
|
||||
hr_comb = self._combine_images(cvt_hr_imgs)
|
||||
s2_comb = self._combine_images(cvt_s2_imgs)
|
||||
s1_comb = self._combine_images(cvt_s1_imgs)
|
||||
hr_comb, s2_comb, s1_comb, targets_comb = self.crop_resize(current_dataset, hr_comb, s2_comb, s1_comb, targets_comb)
|
||||
use_half_mask = torch.rand(1)[0] < self.half_mask_ratio
|
||||
valid = torch.ones_like(targets_comb)
|
||||
|
||||
thres = torch.ones(3) * (1e-5) # ignore black
|
||||
thres = (thres - self.imagenet_mean) / self.imagenet_std
|
||||
valid[targets_comb < thres[:, None, None]] = 0
|
||||
|
||||
if use_half_mask:
|
||||
num_patches = self.masked_position_generator.num_patches
|
||||
mask = np.zeros(self.masked_position_generator.get_shape(), dtype=np.int32)
|
||||
mask[mask.shape[0]//2:, :] = 1
|
||||
else:
|
||||
mask = self.masked_position_generator()
|
||||
|
||||
# location
|
||||
geo_location = pair["location"] if "location" in pair.keys() else None
|
||||
|
||||
# get modality index
|
||||
modality_idx = 2**0 * modality_dict['s2'] + 2**1 * modality_dict['s1'] + 2**2 * modality_dict['hr']
|
||||
modality_flag_s2 = modality_dict['s2']
|
||||
modality_flag_s1 = modality_dict['s1']
|
||||
modality_flag_hr = modality_dict['hr']
|
||||
|
||||
|
||||
current_sample = Sample()
|
||||
current_sample.img_name = pair["hr_path"].split('/')[-1].split('.')[0]
|
||||
current_sample.hr_img = hr_comb
|
||||
current_sample.dataset_name = pair["type"]
|
||||
current_sample.targets = targets_comb
|
||||
current_sample.s2_img = s2_comb
|
||||
current_sample.s2_ct = s2_cts[0]
|
||||
current_sample.s2_ct2 = s2_cts[4]
|
||||
current_sample.s1_img = s1_comb
|
||||
current_sample.anno_mask = torch.from_numpy(mask)
|
||||
current_sample.valid = valid
|
||||
current_sample.location = geo_location
|
||||
current_sample.modality_idx = modality_idx
|
||||
current_sample.modality_flag_s2 = modality_flag_s2
|
||||
current_sample.modality_flag_s1 = modality_flag_s1
|
||||
current_sample.modality_flag_hr = modality_flag_hr
|
||||
current_sample.task_type = self.dataset_type
|
||||
|
||||
return current_sample
|
||||
Reference in New Issue
Block a user