init
This commit is contained in:
104
finetune/tools/train.py
Normal file
104
finetune/tools/train.py
Normal file
@@ -0,0 +1,104 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.logging import print_log
|
||||
from mmengine.runner import Runner
|
||||
|
||||
from mmseg.registry import RUNNERS
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Train a segmentor')
|
||||
parser.add_argument('config', help='train config file path')
|
||||
parser.add_argument('--work-dir', help='the dir to save logs and models')
|
||||
parser.add_argument(
|
||||
'--resume',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='resume from the latest checkpoint in the work_dir automatically')
|
||||
parser.add_argument(
|
||||
'--amp',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='enable automatic-mixed-precision training')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
help='override some settings in the used config, the key-value pair '
|
||||
'in xxx=yyy format will be merged into config file. If the value to '
|
||||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
||||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||
'Note that the quotation marks are necessary and that no white space '
|
||||
'is allowed.')
|
||||
parser.add_argument(
|
||||
'--launcher',
|
||||
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
||||
default='none',
|
||||
help='job launcher')
|
||||
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
|
||||
# will pass the `--local-rank` parameter to `tools/train.py` instead
|
||||
# of `--local_rank`.
|
||||
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
if 'LOCAL_RANK' not in os.environ:
|
||||
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# load config
|
||||
cfg = Config.fromfile(args.config)
|
||||
cfg.launcher = args.launcher
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
# work_dir is determined in this priority: CLI > segment in file > filename
|
||||
if args.work_dir is not None:
|
||||
# update configs according to CLI args if args.work_dir is not None
|
||||
cfg.work_dir = args.work_dir
|
||||
elif cfg.get('work_dir', None) is None:
|
||||
# use config filename as default work_dir if cfg.work_dir is None
|
||||
cfg.work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
|
||||
# enable automatic-mixed-precision training
|
||||
if args.amp is True:
|
||||
optim_wrapper = cfg.optim_wrapper.type
|
||||
if optim_wrapper == 'AmpOptimWrapper':
|
||||
print_log(
|
||||
'AMP training is already enabled in your config.',
|
||||
logger='current',
|
||||
level=logging.WARNING)
|
||||
else:
|
||||
assert optim_wrapper == 'OptimWrapper', (
|
||||
'`--amp` is only supported when the optimizer wrapper type is '
|
||||
f'`OptimWrapper` but got {optim_wrapper}.')
|
||||
cfg.optim_wrapper.type = 'AmpOptimWrapper'
|
||||
cfg.optim_wrapper.loss_scale = 'dynamic'
|
||||
|
||||
# resume training
|
||||
cfg.resume = args.resume
|
||||
|
||||
# build the runner from config
|
||||
if 'runner_type' not in cfg:
|
||||
# build the default runner
|
||||
runner = Runner.from_cfg(cfg)
|
||||
else:
|
||||
# build customized runner from the registry
|
||||
# if 'runner_type' is set in the cfg
|
||||
runner = RUNNERS.build(cfg)
|
||||
|
||||
# start training
|
||||
runner.train()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user