init
This commit is contained in:
185
finetune/tools/deployment/pytorch2torchscript.py
Normal file
185
finetune/tools/deployment/pytorch2torchscript.py
Normal file
@@ -0,0 +1,185 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch._C
|
||||
import torch.serialization
|
||||
from mmengine import Config
|
||||
from mmengine.runner import load_checkpoint
|
||||
from torch import nn
|
||||
|
||||
from mmseg.models import build_segmentor
|
||||
|
||||
torch.manual_seed(3)
|
||||
|
||||
|
||||
def digit_version(version_str):
|
||||
digit_version = []
|
||||
for x in version_str.split('.'):
|
||||
if x.isdigit():
|
||||
digit_version.append(int(x))
|
||||
elif x.find('rc') != -1:
|
||||
patch_version = x.split('rc')
|
||||
digit_version.append(int(patch_version[0]) - 1)
|
||||
digit_version.append(int(patch_version[1]))
|
||||
return digit_version
|
||||
|
||||
|
||||
def check_torch_version():
|
||||
torch_minimum_version = '1.8.0'
|
||||
torch_version = digit_version(torch.__version__)
|
||||
|
||||
assert (torch_version >= digit_version(torch_minimum_version)), \
|
||||
f'Torch=={torch.__version__} is not support for converting to ' \
|
||||
f'torchscript. Please install pytorch>={torch_minimum_version}.'
|
||||
|
||||
|
||||
def _convert_batchnorm(module):
|
||||
module_output = module
|
||||
if isinstance(module, torch.nn.SyncBatchNorm):
|
||||
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
|
||||
module.momentum, module.affine,
|
||||
module.track_running_stats)
|
||||
if module.affine:
|
||||
module_output.weight.data = module.weight.data.clone().detach()
|
||||
module_output.bias.data = module.bias.data.clone().detach()
|
||||
# keep requires_grad unchanged
|
||||
module_output.weight.requires_grad = module.weight.requires_grad
|
||||
module_output.bias.requires_grad = module.bias.requires_grad
|
||||
module_output.running_mean = module.running_mean
|
||||
module_output.running_var = module.running_var
|
||||
module_output.num_batches_tracked = module.num_batches_tracked
|
||||
for name, child in module.named_children():
|
||||
module_output.add_module(name, _convert_batchnorm(child))
|
||||
del module
|
||||
return module_output
|
||||
|
||||
|
||||
def _demo_mm_inputs(input_shape, num_classes):
|
||||
"""Create a superset of inputs needed to run test or train batches.
|
||||
|
||||
Args:
|
||||
input_shape (tuple):
|
||||
input batch dimensions
|
||||
num_classes (int):
|
||||
number of semantic classes
|
||||
"""
|
||||
(N, C, H, W) = input_shape
|
||||
rng = np.random.RandomState(0)
|
||||
imgs = rng.rand(*input_shape)
|
||||
segs = rng.randint(
|
||||
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
|
||||
img_metas = [{
|
||||
'img_shape': (H, W, C),
|
||||
'ori_shape': (H, W, C),
|
||||
'pad_shape': (H, W, C),
|
||||
'filename': '<demo>.png',
|
||||
'scale_factor': 1.0,
|
||||
'flip': False,
|
||||
} for _ in range(N)]
|
||||
mm_inputs = {
|
||||
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
|
||||
'img_metas': img_metas,
|
||||
'gt_semantic_seg': torch.LongTensor(segs)
|
||||
}
|
||||
return mm_inputs
|
||||
|
||||
|
||||
def pytorch2libtorch(model,
|
||||
input_shape,
|
||||
show=False,
|
||||
output_file='tmp.pt',
|
||||
verify=False):
|
||||
"""Export Pytorch model to TorchScript model and verify the outputs are
|
||||
same between Pytorch and TorchScript.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Pytorch model we want to export.
|
||||
input_shape (tuple): Use this input shape to construct
|
||||
the corresponding dummy input and execute the model.
|
||||
show (bool): Whether print the computation graph. Default: False.
|
||||
output_file (string): The path to where we store the
|
||||
output TorchScript model. Default: `tmp.pt`.
|
||||
verify (bool): Whether compare the outputs between
|
||||
Pytorch and TorchScript. Default: False.
|
||||
"""
|
||||
if isinstance(model.decode_head, nn.ModuleList):
|
||||
num_classes = model.decode_head[-1].num_classes
|
||||
else:
|
||||
num_classes = model.decode_head.num_classes
|
||||
|
||||
mm_inputs = _demo_mm_inputs(input_shape, num_classes)
|
||||
|
||||
imgs = mm_inputs.pop('imgs')
|
||||
|
||||
# replace the original forword with forward_dummy
|
||||
model.forward = model.forward_dummy
|
||||
model.eval()
|
||||
traced_model = torch.jit.trace(
|
||||
model,
|
||||
example_inputs=imgs,
|
||||
check_trace=verify,
|
||||
)
|
||||
|
||||
if show:
|
||||
print(traced_model.graph)
|
||||
|
||||
traced_model.save(output_file)
|
||||
print(f'Successfully exported TorchScript model: {output_file}')
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert MMSeg to TorchScript')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
|
||||
parser.add_argument(
|
||||
'--show', action='store_true', help='show TorchScript graph')
|
||||
parser.add_argument(
|
||||
'--verify', action='store_true', help='verify the TorchScript model')
|
||||
parser.add_argument('--output-file', type=str, default='tmp.pt')
|
||||
parser.add_argument(
|
||||
'--shape',
|
||||
type=int,
|
||||
nargs='+',
|
||||
default=[512, 512],
|
||||
help='input image size (height, width)')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
check_torch_version()
|
||||
|
||||
if len(args.shape) == 1:
|
||||
input_shape = (1, 3, args.shape[0], args.shape[0])
|
||||
elif len(args.shape) == 2:
|
||||
input_shape = (
|
||||
1,
|
||||
3,
|
||||
) + tuple(args.shape)
|
||||
else:
|
||||
raise ValueError('invalid input shape')
|
||||
|
||||
cfg = Config.fromfile(args.config)
|
||||
cfg.model.pretrained = None
|
||||
|
||||
# build the model and load checkpoint
|
||||
cfg.model.train_cfg = None
|
||||
segmentor = build_segmentor(
|
||||
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
|
||||
# convert SyncBN to BN
|
||||
segmentor = _convert_batchnorm(segmentor)
|
||||
|
||||
if args.checkpoint:
|
||||
load_checkpoint(segmentor, args.checkpoint, map_location='cpu')
|
||||
|
||||
# convert the PyTorch model to LibTorch model
|
||||
pytorch2libtorch(
|
||||
segmentor,
|
||||
input_shape,
|
||||
show=args.show,
|
||||
output_file=args.output_file,
|
||||
verify=args.verify)
|
||||
Reference in New Issue
Block a user