init
This commit is contained in:
99
finetune/tools/dataset_converters/levircd.py
Normal file
99
finetune/tools/dataset_converters/levircd.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
from mmengine.utils import ProgressBar
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert levir-cd dataset to mmsegmentation format')
|
||||
parser.add_argument('--dataset_path', help='potsdam folder path')
|
||||
parser.add_argument('-o', '--out_dir', help='output path')
|
||||
parser.add_argument(
|
||||
'--clip_size',
|
||||
type=int,
|
||||
help='clipped size of image after preparation',
|
||||
default=256)
|
||||
parser.add_argument(
|
||||
'--stride_size',
|
||||
type=int,
|
||||
help='stride of clipping original images',
|
||||
default=256)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
input_folder = args.dataset_path
|
||||
png_files = glob.glob(
|
||||
os.path.join(input_folder, '**/*.png'), recursive=True)
|
||||
output_folder = args.out_dir
|
||||
prog_bar = ProgressBar(len(png_files))
|
||||
for png_file in png_files:
|
||||
new_path = os.path.join(
|
||||
output_folder,
|
||||
os.path.relpath(os.path.dirname(png_file), input_folder))
|
||||
os.makedirs(os.path.dirname(new_path), exist_ok=True)
|
||||
label = False
|
||||
if 'label' in png_file:
|
||||
label = True
|
||||
clip_big_image(png_file, new_path, args, label)
|
||||
prog_bar.update()
|
||||
|
||||
|
||||
def clip_big_image(image_path, clip_save_dir, args, to_label=False):
|
||||
image = mmcv.imread(image_path)
|
||||
|
||||
h, w, c = image.shape
|
||||
clip_size = args.clip_size
|
||||
stride_size = args.stride_size
|
||||
|
||||
num_rows = math.ceil((h - clip_size) / stride_size) if math.ceil(
|
||||
(h - clip_size) /
|
||||
stride_size) * stride_size + clip_size >= h else math.ceil(
|
||||
(h - clip_size) / stride_size) + 1
|
||||
num_cols = math.ceil((w - clip_size) / stride_size) if math.ceil(
|
||||
(w - clip_size) /
|
||||
stride_size) * stride_size + clip_size >= w else math.ceil(
|
||||
(w - clip_size) / stride_size) + 1
|
||||
|
||||
x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1))
|
||||
xmin = x * clip_size
|
||||
ymin = y * clip_size
|
||||
|
||||
xmin = xmin.ravel()
|
||||
ymin = ymin.ravel()
|
||||
xmin_offset = np.where(xmin + clip_size > w, w - xmin - clip_size,
|
||||
np.zeros_like(xmin))
|
||||
ymin_offset = np.where(ymin + clip_size > h, h - ymin - clip_size,
|
||||
np.zeros_like(ymin))
|
||||
boxes = np.stack([
|
||||
xmin + xmin_offset, ymin + ymin_offset,
|
||||
np.minimum(xmin + clip_size, w),
|
||||
np.minimum(ymin + clip_size, h)
|
||||
],
|
||||
axis=1)
|
||||
|
||||
if to_label:
|
||||
image[image == 255] = 1
|
||||
image = image[:, :, 0]
|
||||
for box in boxes:
|
||||
start_x, start_y, end_x, end_y = box
|
||||
clipped_image = image[start_y:end_y, start_x:end_x] \
|
||||
if to_label else image[start_y:end_y, start_x:end_x, :]
|
||||
idx = osp.basename(image_path).split('.')[0]
|
||||
mmcv.imwrite(
|
||||
clipped_image.astype(np.uint8),
|
||||
osp.join(clip_save_dir,
|
||||
f'{idx}_{start_x}_{start_y}_{end_x}_{end_y}.png'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user