init
This commit is contained in:
112
finetune/tools/dataset_converters/hrf.py
Normal file
112
finetune/tools/dataset_converters/hrf.py
Normal file
@@ -0,0 +1,112 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import os.path as osp
|
||||
import tempfile
|
||||
import zipfile
|
||||
|
||||
import mmcv
|
||||
from mmengine.utils import mkdir_or_exist
|
||||
|
||||
HRF_LEN = 15
|
||||
TRAINING_LEN = 5
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert HRF dataset to mmsegmentation format')
|
||||
parser.add_argument('healthy_path', help='the path of healthy.zip')
|
||||
parser.add_argument(
|
||||
'healthy_manualsegm_path', help='the path of healthy_manualsegm.zip')
|
||||
parser.add_argument('glaucoma_path', help='the path of glaucoma.zip')
|
||||
parser.add_argument(
|
||||
'glaucoma_manualsegm_path', help='the path of glaucoma_manualsegm.zip')
|
||||
parser.add_argument(
|
||||
'diabetic_retinopathy_path',
|
||||
help='the path of diabetic_retinopathy.zip')
|
||||
parser.add_argument(
|
||||
'diabetic_retinopathy_manualsegm_path',
|
||||
help='the path of diabetic_retinopathy_manualsegm.zip')
|
||||
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
||||
parser.add_argument('-o', '--out_dir', help='output path')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
images_path = [
|
||||
args.healthy_path, args.glaucoma_path, args.diabetic_retinopathy_path
|
||||
]
|
||||
annotations_path = [
|
||||
args.healthy_manualsegm_path, args.glaucoma_manualsegm_path,
|
||||
args.diabetic_retinopathy_manualsegm_path
|
||||
]
|
||||
if args.out_dir is None:
|
||||
out_dir = osp.join('data', 'HRF')
|
||||
else:
|
||||
out_dir = args.out_dir
|
||||
|
||||
print('Making directories...')
|
||||
mkdir_or_exist(out_dir)
|
||||
mkdir_or_exist(osp.join(out_dir, 'images'))
|
||||
mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
||||
mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
||||
mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
||||
mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
||||
mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
||||
|
||||
print('Generating images...')
|
||||
for now_path in images_path:
|
||||
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||
zip_file = zipfile.ZipFile(now_path)
|
||||
zip_file.extractall(tmp_dir)
|
||||
|
||||
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
||||
f'len(os.listdir(tmp_dir)) != {HRF_LEN}'
|
||||
|
||||
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
||||
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||
mmcv.imwrite(
|
||||
img,
|
||||
osp.join(out_dir, 'images', 'training',
|
||||
osp.splitext(filename)[0] + '.png'))
|
||||
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
||||
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||
mmcv.imwrite(
|
||||
img,
|
||||
osp.join(out_dir, 'images', 'validation',
|
||||
osp.splitext(filename)[0] + '.png'))
|
||||
|
||||
print('Generating annotations...')
|
||||
for now_path in annotations_path:
|
||||
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||
zip_file = zipfile.ZipFile(now_path)
|
||||
zip_file.extractall(tmp_dir)
|
||||
|
||||
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
||||
f'len(os.listdir(tmp_dir)) != {HRF_LEN}'
|
||||
|
||||
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
||||
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||
# The annotation img should be divided by 128, because some of
|
||||
# the annotation imgs are not standard. We should set a
|
||||
# threshold to convert the nonstandard annotation imgs. The
|
||||
# value divided by 128 is equivalent to '1 if value >= 128
|
||||
# else 0'
|
||||
mmcv.imwrite(
|
||||
img[:, :, 0] // 128,
|
||||
osp.join(out_dir, 'annotations', 'training',
|
||||
osp.splitext(filename)[0] + '.png'))
|
||||
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
||||
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||
mmcv.imwrite(
|
||||
img[:, :, 0] // 128,
|
||||
osp.join(out_dir, 'annotations', 'validation',
|
||||
osp.splitext(filename)[0] + '.png'))
|
||||
|
||||
print('Done!')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user