init
This commit is contained in:
197
finetune/tools/analysis_tools/confusion_matrix.py
Normal file
197
finetune/tools/analysis_tools/confusion_matrix.py
Normal file
@@ -0,0 +1,197 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.ticker import MultipleLocator
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.registry import init_default_scope
|
||||
from mmengine.utils import mkdir_or_exist, progressbar
|
||||
from PIL import Image
|
||||
|
||||
from mmseg.registry import DATASETS
|
||||
|
||||
init_default_scope('mmseg')
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate confusion matrix from segmentation results')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument(
|
||||
'prediction_path', help='prediction path where test folder result')
|
||||
parser.add_argument(
|
||||
'save_dir', help='directory where confusion matrix will be saved')
|
||||
parser.add_argument(
|
||||
'--show', action='store_true', help='show confusion matrix')
|
||||
parser.add_argument(
|
||||
'--color-theme',
|
||||
default='winter',
|
||||
help='theme of the matrix color map')
|
||||
parser.add_argument(
|
||||
'--title',
|
||||
default='Normalized Confusion Matrix',
|
||||
help='title of the matrix color map')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
help='override some settings in the used config, the key-value pair '
|
||||
'in xxx=yyy format will be merged into config file. If the value to '
|
||||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
||||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||
'Note that the quotation marks are necessary and that no white space '
|
||||
'is allowed.')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def calculate_confusion_matrix(dataset, results):
|
||||
"""Calculate the confusion matrix.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): Test or val dataset.
|
||||
results (list[ndarray]): A list of segmentation results in each image.
|
||||
"""
|
||||
n = len(dataset.METAINFO['classes'])
|
||||
confusion_matrix = np.zeros(shape=[n, n])
|
||||
assert len(dataset) == len(results)
|
||||
ignore_index = dataset.ignore_index
|
||||
reduce_zero_label = dataset.reduce_zero_label
|
||||
prog_bar = progressbar.ProgressBar(len(results))
|
||||
for idx, per_img_res in enumerate(results):
|
||||
res_segm = per_img_res
|
||||
gt_segm = dataset[idx]['data_samples'] \
|
||||
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8)
|
||||
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten()
|
||||
if reduce_zero_label:
|
||||
gt_segm = gt_segm - 1
|
||||
to_ignore = gt_segm == ignore_index
|
||||
|
||||
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore]
|
||||
inds = n * gt_segm + res_segm
|
||||
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
|
||||
confusion_matrix += mat
|
||||
prog_bar.update()
|
||||
return confusion_matrix
|
||||
|
||||
|
||||
def plot_confusion_matrix(confusion_matrix,
|
||||
labels,
|
||||
save_dir=None,
|
||||
show=True,
|
||||
title='Normalized Confusion Matrix',
|
||||
color_theme='OrRd'):
|
||||
"""Draw confusion matrix with matplotlib.
|
||||
|
||||
Args:
|
||||
confusion_matrix (ndarray): The confusion matrix.
|
||||
labels (list[str]): List of class names.
|
||||
save_dir (str|optional): If set, save the confusion matrix plot to the
|
||||
given path. Default: None.
|
||||
show (bool): Whether to show the plot. Default: True.
|
||||
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
|
||||
color_theme (str): Theme of the matrix color map. Default: `winter`.
|
||||
"""
|
||||
# normalize the confusion matrix
|
||||
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
|
||||
confusion_matrix = \
|
||||
confusion_matrix.astype(np.float32) / per_label_sums * 100
|
||||
|
||||
num_classes = len(labels)
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300)
|
||||
cmap = plt.get_cmap(color_theme)
|
||||
im = ax.imshow(confusion_matrix, cmap=cmap)
|
||||
colorbar = plt.colorbar(mappable=im, ax=ax)
|
||||
colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小
|
||||
|
||||
title_font = {'weight': 'bold', 'size': 20}
|
||||
ax.set_title(title, fontdict=title_font)
|
||||
label_font = {'size': 40}
|
||||
plt.ylabel('Ground Truth Label', fontdict=label_font)
|
||||
plt.xlabel('Prediction Label', fontdict=label_font)
|
||||
|
||||
# draw locator
|
||||
xmajor_locator = MultipleLocator(1)
|
||||
xminor_locator = MultipleLocator(0.5)
|
||||
ax.xaxis.set_major_locator(xmajor_locator)
|
||||
ax.xaxis.set_minor_locator(xminor_locator)
|
||||
ymajor_locator = MultipleLocator(1)
|
||||
yminor_locator = MultipleLocator(0.5)
|
||||
ax.yaxis.set_major_locator(ymajor_locator)
|
||||
ax.yaxis.set_minor_locator(yminor_locator)
|
||||
|
||||
# draw grid
|
||||
ax.grid(True, which='minor', linestyle='-')
|
||||
|
||||
# draw label
|
||||
ax.set_xticks(np.arange(num_classes))
|
||||
ax.set_yticks(np.arange(num_classes))
|
||||
ax.set_xticklabels(labels, fontsize=20)
|
||||
ax.set_yticklabels(labels, fontsize=20)
|
||||
|
||||
ax.tick_params(
|
||||
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
|
||||
plt.setp(
|
||||
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
|
||||
|
||||
# draw confusion matrix value
|
||||
for i in range(num_classes):
|
||||
for j in range(num_classes):
|
||||
ax.text(
|
||||
j,
|
||||
i,
|
||||
'{}%'.format(
|
||||
round(confusion_matrix[i, j], 2
|
||||
) if not np.isnan(confusion_matrix[i, j]) else -1),
|
||||
ha='center',
|
||||
va='center',
|
||||
color='k',
|
||||
size=20)
|
||||
|
||||
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
|
||||
|
||||
fig.tight_layout()
|
||||
if save_dir is not None:
|
||||
mkdir_or_exist(save_dir)
|
||||
plt.savefig(
|
||||
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
cfg = Config.fromfile(args.config)
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
results = []
|
||||
for img in sorted(os.listdir(args.prediction_path)):
|
||||
img = os.path.join(args.prediction_path, img)
|
||||
image = Image.open(img)
|
||||
image = np.copy(image)
|
||||
results.append(image)
|
||||
|
||||
assert isinstance(results, list)
|
||||
if isinstance(results[0], np.ndarray):
|
||||
pass
|
||||
else:
|
||||
raise TypeError('invalid type of prediction results')
|
||||
|
||||
dataset = DATASETS.build(cfg.test_dataloader.dataset)
|
||||
confusion_matrix = calculate_confusion_matrix(dataset, results)
|
||||
plot_confusion_matrix(
|
||||
confusion_matrix,
|
||||
dataset.METAINFO['classes'],
|
||||
save_dir=args.save_dir,
|
||||
show=args.show,
|
||||
title=args.title,
|
||||
color_theme=args.color_theme)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user