init
This commit is contained in:
121
finetune/tools/analysis_tools/benchmark.py
Normal file
121
finetune/tools/analysis_tools/benchmark.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmengine import Config
|
||||
from mmengine.fileio import dump
|
||||
from mmengine.model.utils import revert_sync_batchnorm
|
||||
from mmengine.registry import init_default_scope
|
||||
from mmengine.runner import Runner, load_checkpoint
|
||||
from mmengine.utils import mkdir_or_exist
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='MMSeg benchmark a model')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument('checkpoint', help='checkpoint file')
|
||||
parser.add_argument(
|
||||
'--log-interval', type=int, default=50, help='interval of logging')
|
||||
parser.add_argument(
|
||||
'--work-dir',
|
||||
help=('if specified, the results will be dumped '
|
||||
'into the directory as json'))
|
||||
parser.add_argument('--repeat-times', type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
cfg = Config.fromfile(args.config)
|
||||
|
||||
init_default_scope(cfg.get('default_scope', 'mmseg'))
|
||||
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
if args.work_dir is not None:
|
||||
mkdir_or_exist(osp.abspath(args.work_dir))
|
||||
json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
|
||||
else:
|
||||
# use config filename as default work_dir if cfg.work_dir is None
|
||||
work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
mkdir_or_exist(osp.abspath(work_dir))
|
||||
json_file = osp.join(work_dir, f'fps_{timestamp}.json')
|
||||
|
||||
repeat_times = args.repeat_times
|
||||
# set cudnn_benchmark
|
||||
torch.backends.cudnn.benchmark = False
|
||||
cfg.model.pretrained = None
|
||||
|
||||
benchmark_dict = dict(config=args.config, unit='img / s')
|
||||
overall_fps_list = []
|
||||
cfg.test_dataloader.batch_size = 1
|
||||
for time_index in range(repeat_times):
|
||||
print(f'Run {time_index + 1}:')
|
||||
# build the dataloader
|
||||
data_loader = Runner.build_dataloader(cfg.test_dataloader)
|
||||
|
||||
# build the model and load checkpoint
|
||||
cfg.model.train_cfg = None
|
||||
model = MODELS.build(cfg.model)
|
||||
|
||||
if 'checkpoint' in args and osp.exists(args.checkpoint):
|
||||
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
||||
|
||||
if torch.cuda.is_available():
|
||||
model = model.cuda()
|
||||
|
||||
model = revert_sync_batchnorm(model)
|
||||
|
||||
model.eval()
|
||||
|
||||
# the first several iterations may be very slow so skip them
|
||||
num_warmup = 5
|
||||
pure_inf_time = 0
|
||||
total_iters = 200
|
||||
|
||||
# benchmark with 200 batches and take the average
|
||||
for i, data in enumerate(data_loader):
|
||||
data = model.data_preprocessor(data, True)
|
||||
inputs = data['inputs']
|
||||
data_samples = data['data_samples']
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.perf_counter()
|
||||
|
||||
with torch.no_grad():
|
||||
model(inputs, data_samples, mode='predict')
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
elapsed = time.perf_counter() - start_time
|
||||
|
||||
if i >= num_warmup:
|
||||
pure_inf_time += elapsed
|
||||
if (i + 1) % args.log_interval == 0:
|
||||
fps = (i + 1 - num_warmup) / pure_inf_time
|
||||
print(f'Done image [{i + 1:<3}/ {total_iters}], '
|
||||
f'fps: {fps:.2f} img / s')
|
||||
|
||||
if (i + 1) == total_iters:
|
||||
fps = (i + 1 - num_warmup) / pure_inf_time
|
||||
print(f'Overall fps: {fps:.2f} img / s\n')
|
||||
benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
|
||||
overall_fps_list.append(fps)
|
||||
break
|
||||
benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
|
||||
benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
|
||||
print(f'Average fps of {repeat_times} evaluations: '
|
||||
f'{benchmark_dict["average_fps"]}')
|
||||
print(f'The variance of {repeat_times} evaluations: '
|
||||
f'{benchmark_dict["fps_variance"]}')
|
||||
dump(benchmark_dict, json_file, indent=4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user