This commit is contained in:
esenke
2025-12-08 22:16:31 +08:00
commit 01adcfdf60
305 changed files with 50879 additions and 0 deletions

View File

@@ -0,0 +1,130 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""Modified from https://github.com/open-
mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py."""
import argparse
import json
from collections import defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
def plot_curve(log_dicts, args):
if args.backend is not None:
plt.switch_backend(args.backend)
sns.set_style(args.style)
# if legend is None, use {filename}_{key} as legend
legend = args.legend
if legend is None:
legend = []
for json_log in args.json_logs:
for metric in args.keys:
legend.append(f'{json_log}_{metric}')
assert len(legend) == (len(args.json_logs) * len(args.keys))
metrics = args.keys
num_metrics = len(metrics)
for i, log_dict in enumerate(log_dicts):
epochs = list(log_dict.keys())
for j, metric in enumerate(metrics):
print(f'plot curve of {args.json_logs[i]}, metric is {metric}')
plot_epochs = []
plot_iters = []
plot_values = []
# In some log files exist lines of validation,
# `mode` list is used to only collect iter number
# of training line.
for epoch in epochs:
epoch_logs = log_dict[epoch]
if metric not in epoch_logs.keys():
continue
if metric in ['mIoU', 'mAcc', 'aAcc']:
plot_epochs.append(epoch)
plot_values.append(epoch_logs[metric][0])
else:
for idx in range(len(epoch_logs[metric])):
plot_iters.append(epoch_logs['step'][idx])
plot_values.append(epoch_logs[metric][idx])
ax = plt.gca()
label = legend[i * num_metrics + j]
if metric in ['mIoU', 'mAcc', 'aAcc']:
ax.set_xticks(plot_epochs)
plt.xlabel('step')
plt.plot(plot_epochs, plot_values, label=label, marker='o')
else:
plt.xlabel('iter')
plt.plot(plot_iters, plot_values, label=label, linewidth=0.5)
plt.legend()
if args.title is not None:
plt.title(args.title)
if args.out is None:
plt.show()
else:
print(f'save curve to: {args.out}')
plt.savefig(args.out)
plt.cla()
def parse_args():
parser = argparse.ArgumentParser(description='Analyze Json Log')
parser.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser.add_argument(
'--keys',
type=str,
nargs='+',
default=['mIoU'],
help='the metric that you want to plot')
parser.add_argument('--title', type=str, help='title of figure')
parser.add_argument(
'--legend',
type=str,
nargs='+',
default=None,
help='legend of each plot')
parser.add_argument(
'--backend', type=str, default=None, help='backend of plt')
parser.add_argument(
'--style', type=str, default='dark', help='style of plt')
parser.add_argument('--out', type=str, default=None)
args = parser.parse_args()
return args
def load_json_logs(json_logs):
# load and convert json_logs to log_dict, key is step, value is a sub dict
# keys of sub dict is different metrics
# value of sub dict is a list of corresponding values of all iterations
log_dicts = [dict() for _ in json_logs]
prev_step = 0
for json_log, log_dict in zip(json_logs, log_dicts):
with open(json_log) as log_file:
for line in log_file:
log = json.loads(line.strip())
# the final step in json file is 0.
if 'step' in log and log['step'] != 0:
step = log['step']
prev_step = step
else:
step = prev_step
if step not in log_dict:
log_dict[step] = defaultdict(list)
for k, v in log.items():
log_dict[step][k].append(v)
return log_dicts
def main():
args = parse_args()
json_logs = args.json_logs
for json_log in json_logs:
assert json_log.endswith('.json')
log_dicts = load_json_logs(json_logs)
plot_curve(log_dicts, args)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,121 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import time
import numpy as np
import torch
from mmengine import Config
from mmengine.fileio import dump
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.runner import Runner, load_checkpoint
from mmengine.utils import mkdir_or_exist
from mmseg.registry import MODELS
def parse_args():
parser = argparse.ArgumentParser(description='MMSeg benchmark a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--work-dir',
help=('if specified, the results will be dumped '
'into the directory as json'))
parser.add_argument('--repeat-times', type=int, default=1)
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
init_default_scope(cfg.get('default_scope', 'mmseg'))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
if args.work_dir is not None:
mkdir_or_exist(osp.abspath(args.work_dir))
json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
else:
# use config filename as default work_dir if cfg.work_dir is None
work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
mkdir_or_exist(osp.abspath(work_dir))
json_file = osp.join(work_dir, f'fps_{timestamp}.json')
repeat_times = args.repeat_times
# set cudnn_benchmark
torch.backends.cudnn.benchmark = False
cfg.model.pretrained = None
benchmark_dict = dict(config=args.config, unit='img / s')
overall_fps_list = []
cfg.test_dataloader.batch_size = 1
for time_index in range(repeat_times):
print(f'Run {time_index + 1}:')
# build the dataloader
data_loader = Runner.build_dataloader(cfg.test_dataloader)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = MODELS.build(cfg.model)
if 'checkpoint' in args and osp.exists(args.checkpoint):
load_checkpoint(model, args.checkpoint, map_location='cpu')
if torch.cuda.is_available():
model = model.cuda()
model = revert_sync_batchnorm(model)
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
total_iters = 200
# benchmark with 200 batches and take the average
for i, data in enumerate(data_loader):
data = model.data_preprocessor(data, True)
inputs = data['inputs']
data_samples = data['data_samples']
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(inputs, data_samples, mode='predict')
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Done image [{i + 1:<3}/ {total_iters}], '
f'fps: {fps:.2f} img / s')
if (i + 1) == total_iters:
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Overall fps: {fps:.2f} img / s\n')
benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
overall_fps_list.append(fps)
break
benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
print(f'Average fps of {repeat_times} evaluations: '
f'{benchmark_dict["average_fps"]}')
print(f'The variance of {repeat_times} evaluations: '
f'{benchmark_dict["fps_variance"]}')
dump(benchmark_dict, json_file, indent=4)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,77 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.utils import ProgressBar
from mmseg.registry import DATASETS, VISUALIZERS
from mmseg.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--show-interval',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# register all modules in mmdet into the registries
register_all_modules()
dataset = DATASETS.build(cfg.train_dataloader.dataset)
visualizer = VISUALIZERS.build(cfg.visualizer)
visualizer.dataset_meta = dataset.metainfo
progress_bar = ProgressBar(len(dataset))
for item in dataset:
img = item['inputs'].permute(1, 2, 0).numpy()
img = img[..., [2, 1, 0]] # bgr to rgb
data_sample = item['data_samples'].numpy()
img_path = osp.basename(item['data_samples'].img_path)
out_file = osp.join(
args.output_dir,
osp.basename(img_path)) if args.output_dir is not None else None
visualizer.add_datasample(
name=osp.basename(img_path),
image=img,
data_sample=data_sample,
draw_gt=True,
draw_pred=False,
wait_time=args.show_interval,
out_file=out_file,
show=not args.not_show)
progress_bar.update()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,197 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmengine.config import Config, DictAction
from mmengine.registry import init_default_scope
from mmengine.utils import mkdir_or_exist, progressbar
from PIL import Image
from mmseg.registry import DATASETS
init_default_scope('mmseg')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from segmentation results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test folder result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='winter',
help='theme of the matrix color map')
parser.add_argument(
'--title',
default='Normalized Confusion Matrix',
help='title of the matrix color map')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def calculate_confusion_matrix(dataset, results):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of segmentation results in each image.
"""
n = len(dataset.METAINFO['classes'])
confusion_matrix = np.zeros(shape=[n, n])
assert len(dataset) == len(results)
ignore_index = dataset.ignore_index
reduce_zero_label = dataset.reduce_zero_label
prog_bar = progressbar.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
res_segm = per_img_res
gt_segm = dataset[idx]['data_samples'] \
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8)
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten()
if reduce_zero_label:
gt_segm = gt_segm - 1
to_ignore = gt_segm == ignore_index
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore]
inds = n * gt_segm + res_segm
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
confusion_matrix += mat
prog_bar.update()
return confusion_matrix
def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='OrRd'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `winter`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100
num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
colorbar = plt.colorbar(mappable=im, ax=ax)
colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小
title_font = {'weight': 'bold', 'size': 20}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 40}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)
# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)
# draw grid
ax.grid(True, which='minor', linestyle='-')
# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels, fontsize=20)
ax.set_yticklabels(labels, fontsize=20)
ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
# draw confusion matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(
round(confusion_matrix[i, j], 2
) if not np.isnan(confusion_matrix[i, j]) else -1),
ha='center',
va='center',
color='k',
size=20)
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
fig.tight_layout()
if save_dir is not None:
mkdir_or_exist(save_dir)
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
results = []
for img in sorted(os.listdir(args.prediction_path)):
img = os.path.join(args.prediction_path, img)
image = Image.open(img)
image = np.copy(image)
results.append(image)
assert isinstance(results, list)
if isinstance(results[0], np.ndarray):
pass
else:
raise TypeError('invalid type of prediction results')
dataset = DATASETS.build(cfg.test_dataloader.dataset)
confusion_matrix = calculate_confusion_matrix(dataset, results)
plot_confusion_matrix(
confusion_matrix,
dataset.METAINFO['classes'],
save_dir=args.save_dir,
show=args.show,
title=args.title,
color_theme=args.color_theme)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,124 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import tempfile
from pathlib import Path
import torch
from mmengine import Config, DictAction
from mmengine.logging import MMLogger
from mmengine.model import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmseg.models import BaseSegmentor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
try:
from mmengine.analysis import get_model_complexity_info
from mmengine.analysis.print_helper import _format_size
except ImportError:
raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.')
def parse_args():
parser = argparse.ArgumentParser(
description='Get the FLOPs of a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[2048, 1024],
help='input image size')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def inference(args: argparse.Namespace, logger: MMLogger) -> dict:
config_name = Path(args.config)
if not config_name.exists():
logger.error(f'Config file {config_name} does not exist')
cfg: Config = Config.fromfile(config_name)
cfg.work_dir = tempfile.TemporaryDirectory().name
cfg.log_level = 'WARN'
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('scope', 'mmseg'))
if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
result = {}
model: BaseSegmentor = MODELS.build(cfg.model)
if hasattr(model, 'auxiliary_head'):
model.auxiliary_head = None
if torch.cuda.is_available():
model.cuda()
model = revert_sync_batchnorm(model)
result['ori_shape'] = input_shape[-2:]
result['pad_shape'] = input_shape[-2:]
data_batch = {
'inputs': [torch.rand(input_shape)],
'data_samples': [SegDataSample(metainfo=result)]
}
data = model.data_preprocessor(data_batch)
model.eval()
if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']:
# TODO: Support MaskFormer and Mask2Former
raise NotImplementedError('MaskFormer and Mask2Former are not '
'supported yet.')
outputs = get_model_complexity_info(
model,
input_shape=None,
inputs=data['inputs'],
show_table=False,
show_arch=False)
result['flops'] = _format_size(outputs['flops'])
result['params'] = _format_size(outputs['params'])
result['compute_type'] = 'direct: randomly generate a picture'
return result
def main():
args = parse_args()
logger = MMLogger.get_instance(name='MMLogger')
result = inference(args, logger)
split_line = '=' * 30
ori_shape = result['ori_shape']
pad_shape = result['pad_shape']
flops = result['flops']
params = result['params']
compute_type = result['compute_type']
if pad_shape != ori_shape:
print(f'{split_line}\nUse size divisor set input shape '
f'from {ori_shape} to {pad_shape}')
print(f'{split_line}\nCompute type: {compute_type}\n'
f'Input shape: {pad_shape}\nFlops: {flops}\n'
f'Params: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify '
'that the flops computation is correct.')
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,127 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""Use the pytorch-grad-cam tool to visualize Class Activation Maps (CAM).
requirement: pip install grad-cam
"""
from argparse import ArgumentParser
import numpy as np
import torch
import torch.nn.functional as F
from mmengine import Config
from mmengine.model import revert_sync_batchnorm
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import preprocess_image, show_cam_on_image
from mmseg.apis import inference_model, init_model, show_result_pyplot
from mmseg.utils import register_all_modules
class SemanticSegmentationTarget:
"""wrap the model.
requirement: pip install grad-cam
Args:
category (int): Visualization class.
mask (ndarray): Mask of class.
size (tuple): Image size.
"""
def __init__(self, category, mask, size):
self.category = category
self.mask = torch.from_numpy(mask)
self.size = size
if torch.cuda.is_available():
self.mask = self.mask.cuda()
def __call__(self, model_output):
model_output = torch.unsqueeze(model_output, dim=0)
model_output = F.interpolate(
model_output, size=self.size, mode='bilinear')
model_output = torch.squeeze(model_output, dim=0)
return (model_output[self.category, :, :] * self.mask).sum()
def main():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-file',
default='prediction.png',
help='Path to output prediction file')
parser.add_argument(
'--cam-file', default='vis_cam.png', help='Path to output cam file')
parser.add_argument(
'--target-layers',
default='backbone.layer4[2]',
help='Target layers to visualize CAM')
parser.add_argument(
'--category-index', default='7', help='Category to visualize CAM')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
register_all_modules()
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
# test a single image
result = inference_model(model, args.img)
# show the results
show_result_pyplot(
model,
args.img,
result,
draw_gt=False,
show=False if args.out_file is not None else True,
out_file=args.out_file)
# result data conversion
prediction_data = result.pred_sem_seg.data
pre_np_data = prediction_data.cpu().numpy().squeeze(0)
target_layers = args.target_layers
target_layers = [eval(f'model.{target_layers}')]
category = int(args.category_index)
mask_float = np.float32(pre_np_data == category)
# data processing
image = np.array(Image.open(args.img).convert('RGB'))
height, width = image.shape[0], image.shape[1]
rgb_img = np.float32(image) / 255
config = Config.fromfile(args.config)
image_mean = config.data_preprocessor['mean']
image_std = config.data_preprocessor['std']
input_tensor = preprocess_image(
rgb_img,
mean=[x / 255 for x in image_mean],
std=[x / 255 for x in image_std])
# Grad CAM(Class Activation Maps)
# Can also be LayerCAM, XGradCAM, GradCAMPlusPlus, EigenCAM, EigenGradCAM
targets = [
SemanticSegmentationTarget(category, mask_float, (height, width))
]
with GradCAM(
model=model,
target_layers=target_layers,
use_cuda=torch.cuda.is_available()) as cam:
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
# save cam file
Image.fromarray(cam_image).save(args.cam_file)
if __name__ == '__main__':
main()