init
This commit is contained in:
240
finetune/mmseg/utils/tokenizer.py
Normal file
240
finetune/mmseg/utils/tokenizer.py
Normal file
@@ -0,0 +1,240 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
"""CLIP tokenizer.
|
||||
|
||||
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright
|
||||
(c) 2021 OpenAI.
|
||||
"""
|
||||
import gzip
|
||||
import html
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import List, Union
|
||||
|
||||
import ftfy
|
||||
import regex as re
|
||||
import torch
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def default_bpe():
|
||||
return os.path.join(
|
||||
os.path.dirname(os.path.abspath(__file__)),
|
||||
'bpe_simple_vocab_16e6.txt.gz')
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
|
||||
The reversible bpe codes work on unicode strings. This means you need a
|
||||
large # of unicode characters in your vocab if you want to avoid UNKs. When
|
||||
you're at something like a 10B token dataset you end up needing around 5K
|
||||
for decent coverage. This is a significant percentage of your normal, say,
|
||||
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
|
||||
unicode strings. And avoids mapping to whitespace/control characters the
|
||||
bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord('!'),
|
||||
ord('~') + 1)) + list(range(
|
||||
ord('¡'),
|
||||
ord('¬') + 1)) + list(range(ord('®'),
|
||||
ord('ÿ') + 1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
|
||||
Word is represented as tuple of symbols (symbols being variable-length
|
||||
strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r'\s+', ' ', text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
class SimpleTokenizer:
|
||||
|
||||
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
merges = gzip.open(bpe_path).read().decode('utf-8').split('\n')
|
||||
merges = merges[1:49152 - 256 - 2 + 1]
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
vocab = list(bytes_to_unicode().values())
|
||||
vocab = vocab + [v + '</w>' for v in vocab]
|
||||
for merge in merges:
|
||||
vocab.append(''.join(merge))
|
||||
if not special_tokens:
|
||||
special_tokens = ['<start_of_text>', '<end_of_text>']
|
||||
else:
|
||||
special_tokens = ['<start_of_text>', '<end_of_text>'
|
||||
] + special_tokens
|
||||
vocab.extend(special_tokens)
|
||||
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {t: t for t in special_tokens}
|
||||
special = '|'.join(special_tokens)
|
||||
self.pat = re.compile(
|
||||
special +
|
||||
r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||||
re.IGNORECASE)
|
||||
|
||||
self.vocab_size = len(self.encoder)
|
||||
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token[:-1]) + (token[-1] + '</w>', )
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token + '</w>'
|
||||
|
||||
while True:
|
||||
bigram = min(
|
||||
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except: # noqa: E722, E261
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[
|
||||
i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = ' '.join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def encode(self, text):
|
||||
bpe_tokens = []
|
||||
text = whitespace_clean(basic_clean(text)).lower()
|
||||
for token in re.findall(self.pat, text):
|
||||
token = ''.join(self.byte_encoder[b]
|
||||
for b in token.encode('utf-8'))
|
||||
bpe_tokens.extend(self.encoder[bpe_token]
|
||||
for bpe_token in self.bpe(token).split(' '))
|
||||
return bpe_tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
text = ''.join([self.decoder[token] for token in tokens])
|
||||
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
||||
'utf-8', errors='replace').replace('</w>', ' ')
|
||||
return text
|
||||
|
||||
|
||||
_tokenizer = SimpleTokenizer()
|
||||
|
||||
|
||||
def decode(output_ids: torch.Tensor):
|
||||
output_ids = output_ids.cpu().numpy()
|
||||
return _tokenizer.decode(output_ids)
|
||||
|
||||
|
||||
def tokenize(texts: Union[str, List[str]],
|
||||
context_length: int = 77) -> torch.LongTensor:
|
||||
"""Returns the tokenized representation of given input string(s)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : Union[str, List[str]]
|
||||
An input string or a list of input strings to tokenize
|
||||
context_length : int
|
||||
The context length to use; all CLIP models use 77 as the context length
|
||||
|
||||
Returns
|
||||
-------
|
||||
A two-dimensional tensor containing the resulting tokens,
|
||||
shape = [number of input strings, context_length]
|
||||
"""
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = _tokenizer.encoder['<start_of_text>']
|
||||
eot_token = _tokenizer.encoder['<end_of_text>']
|
||||
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
|
||||
for text in texts]
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
if len(tokens) > context_length:
|
||||
tokens = tokens[:context_length] # Truncate
|
||||
tokens[-1] = eot_token
|
||||
result[i, :len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class HFTokenizer:
|
||||
"""HuggingFace tokenizer wrapper."""
|
||||
|
||||
def __init__(self, tokenizer_name: str):
|
||||
from transformers import AutoTokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||||
|
||||
def save_pretrained(self, dest):
|
||||
self.tokenizer.save_pretrained(dest)
|
||||
|
||||
def __call__(self,
|
||||
texts: Union[str, List[str]],
|
||||
context_length: int = 77) -> torch.Tensor:
|
||||
# same cleaning as for default tokenizer, except lowercasing
|
||||
# adding lower (for case-sensitive tokenizers) will make it
|
||||
# more robust but less sensitive to nuance
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
||||
input_ids = self.tokenizer(
|
||||
texts,
|
||||
return_tensors='pt',
|
||||
max_length=context_length,
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
).input_ids
|
||||
return input_ids
|
||||
Reference in New Issue
Block a user