init
This commit is contained in:
364
finetune/mmseg/models/segmentors/encoder_decoder.py
Normal file
364
finetune/mmseg/models/segmentors/encoder_decoder.py
Normal file
@@ -0,0 +1,364 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmengine.logging import print_log
|
||||
from torch import Tensor
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
|
||||
OptSampleList, SampleList, add_prefix)
|
||||
from .base import BaseSegmentor
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class EncoderDecoder(BaseSegmentor):
|
||||
"""Encoder Decoder segmentors.
|
||||
|
||||
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
|
||||
Note that auxiliary_head is only used for deep supervision during training,
|
||||
which could be dumped during inference.
|
||||
|
||||
1. The ``loss`` method is used to calculate the loss of model,
|
||||
which includes two steps: (1) Extracts features to obtain the feature maps
|
||||
(2) Call the decode head loss function to forward decode head model and
|
||||
calculate losses.
|
||||
|
||||
.. code:: text
|
||||
|
||||
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
|
||||
_decode_head_forward_train(): decode_head.loss()
|
||||
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
|
||||
|
||||
2. The ``predict`` method is used to predict segmentation results,
|
||||
which includes two steps: (1) Run inference function to obtain the list of
|
||||
seg_logits (2) Call post-processing function to obtain list of
|
||||
``SegDataSample`` including ``pred_sem_seg`` and ``seg_logits``.
|
||||
|
||||
.. code:: text
|
||||
|
||||
predict(): inference() -> postprocess_result()
|
||||
infercen(): whole_inference()/slide_inference()
|
||||
whole_inference()/slide_inference(): encoder_decoder()
|
||||
encoder_decoder(): extract_feat() -> decode_head.predict()
|
||||
|
||||
3. The ``_forward`` method is used to output the tensor by running the model,
|
||||
which includes two steps: (1) Extracts features to obtain the feature maps
|
||||
(2)Call the decode head forward function to forward decode head model.
|
||||
|
||||
.. code:: text
|
||||
|
||||
_forward(): extract_feat() -> _decode_head.forward()
|
||||
|
||||
Args:
|
||||
|
||||
backbone (ConfigType): The config for the backnone of segmentor.
|
||||
decode_head (ConfigType): The config for the decode head of segmentor.
|
||||
neck (OptConfigType): The config for the neck of segmentor.
|
||||
Defaults to None.
|
||||
auxiliary_head (OptConfigType): The config for the auxiliary head of
|
||||
segmentor. Defaults to None.
|
||||
train_cfg (OptConfigType): The config for training. Defaults to None.
|
||||
test_cfg (OptConfigType): The config for testing. Defaults to None.
|
||||
data_preprocessor (dict, optional): The pre-process config of
|
||||
:class:`BaseDataPreprocessor`.
|
||||
pretrained (str, optional): The path for pretrained model.
|
||||
Defaults to None.
|
||||
init_cfg (dict, optional): The weight initialized config for
|
||||
:class:`BaseModule`.
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self,
|
||||
backbone: ConfigType,
|
||||
decode_head: ConfigType,
|
||||
neck: OptConfigType = None,
|
||||
auxiliary_head: OptConfigType = None,
|
||||
train_cfg: OptConfigType = None,
|
||||
test_cfg: OptConfigType = None,
|
||||
data_preprocessor: OptConfigType = None,
|
||||
pretrained: Optional[str] = None,
|
||||
init_cfg: OptMultiConfig = None):
|
||||
super().__init__(
|
||||
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
|
||||
if pretrained is not None:
|
||||
assert backbone.get('pretrained') is None, \
|
||||
'both backbone and segmentor set pretrained weight'
|
||||
backbone.pretrained = pretrained
|
||||
self.backbone = MODELS.build(backbone)
|
||||
if neck is not None:
|
||||
self.neck = MODELS.build(neck)
|
||||
self._init_decode_head(decode_head)
|
||||
self._init_auxiliary_head(auxiliary_head)
|
||||
|
||||
self.train_cfg = train_cfg
|
||||
self.test_cfg = test_cfg
|
||||
|
||||
assert self.with_decode_head
|
||||
|
||||
def _init_decode_head(self, decode_head: ConfigType) -> None:
|
||||
"""Initialize ``decode_head``"""
|
||||
self.decode_head = MODELS.build(decode_head)
|
||||
self.align_corners = self.decode_head.align_corners
|
||||
self.num_classes = self.decode_head.num_classes
|
||||
self.out_channels = self.decode_head.out_channels
|
||||
|
||||
def _init_auxiliary_head(self, auxiliary_head: ConfigType) -> None:
|
||||
"""Initialize ``auxiliary_head``"""
|
||||
if auxiliary_head is not None:
|
||||
if isinstance(auxiliary_head, list):
|
||||
self.auxiliary_head = nn.ModuleList()
|
||||
for head_cfg in auxiliary_head:
|
||||
self.auxiliary_head.append(MODELS.build(head_cfg))
|
||||
else:
|
||||
self.auxiliary_head = MODELS.build(auxiliary_head)
|
||||
|
||||
def extract_feat(self, inputs: Tensor) -> List[Tensor]:
|
||||
"""Extract features from images."""
|
||||
x = self.backbone(inputs)
|
||||
if self.with_neck:
|
||||
x = self.neck(x)
|
||||
return x
|
||||
|
||||
def encode_decode(self, inputs: Tensor,
|
||||
batch_img_metas: List[dict]) -> Tensor:
|
||||
"""Encode images with backbone and decode into a semantic segmentation
|
||||
map of the same size as input."""
|
||||
x = self.extract_feat(inputs)
|
||||
seg_logits = self.decode_head.predict(x, batch_img_metas,
|
||||
self.test_cfg)
|
||||
|
||||
return seg_logits
|
||||
|
||||
def _decode_head_forward_train(self, inputs: List[Tensor],
|
||||
data_samples: SampleList) -> dict:
|
||||
"""Run forward function and calculate loss for decode head in
|
||||
training."""
|
||||
losses = dict()
|
||||
loss_decode = self.decode_head.loss(inputs, data_samples,
|
||||
self.train_cfg)
|
||||
|
||||
losses.update(add_prefix(loss_decode, 'decode'))
|
||||
return losses
|
||||
|
||||
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
|
||||
data_samples: SampleList) -> dict:
|
||||
"""Run forward function and calculate loss for auxiliary head in
|
||||
training."""
|
||||
losses = dict()
|
||||
if isinstance(self.auxiliary_head, nn.ModuleList):
|
||||
for idx, aux_head in enumerate(self.auxiliary_head):
|
||||
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
|
||||
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
|
||||
else:
|
||||
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
|
||||
self.train_cfg)
|
||||
losses.update(add_prefix(loss_aux, 'aux'))
|
||||
|
||||
return losses
|
||||
|
||||
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
|
||||
"""Calculate losses from a batch of inputs and data samples.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Input images.
|
||||
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
|
||||
It usually includes information such as `metainfo` and
|
||||
`gt_sem_seg`.
|
||||
|
||||
Returns:
|
||||
dict[str, Tensor]: a dictionary of loss components
|
||||
"""
|
||||
|
||||
x = self.extract_feat(inputs)
|
||||
|
||||
losses = dict()
|
||||
|
||||
loss_decode = self._decode_head_forward_train(x, data_samples)
|
||||
losses.update(loss_decode)
|
||||
|
||||
if self.with_auxiliary_head:
|
||||
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
|
||||
losses.update(loss_aux)
|
||||
|
||||
return losses
|
||||
|
||||
def predict(self,
|
||||
inputs: Tensor,
|
||||
data_samples: OptSampleList = None) -> SampleList:
|
||||
"""Predict results from a batch of inputs and data samples with post-
|
||||
processing.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Inputs with shape (N, C, H, W).
|
||||
data_samples (List[:obj:`SegDataSample`], optional): The seg data
|
||||
samples. It usually includes information such as `metainfo`
|
||||
and `gt_sem_seg`.
|
||||
|
||||
Returns:
|
||||
list[:obj:`SegDataSample`]: Segmentation results of the
|
||||
input images. Each SegDataSample usually contain:
|
||||
|
||||
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
|
||||
- ``seg_logits``(PixelData): Predicted logits of semantic
|
||||
segmentation before normalization.
|
||||
"""
|
||||
if data_samples is not None:
|
||||
batch_img_metas = [
|
||||
data_sample.metainfo for data_sample in data_samples
|
||||
]
|
||||
else:
|
||||
batch_img_metas = [
|
||||
dict(
|
||||
ori_shape=inputs.shape[2:],
|
||||
img_shape=inputs.shape[2:],
|
||||
pad_shape=inputs.shape[2:],
|
||||
padding_size=[0, 0, 0, 0])
|
||||
] * inputs.shape[0]
|
||||
|
||||
seg_logits = self.inference(inputs, batch_img_metas)
|
||||
|
||||
return self.postprocess_result(seg_logits, data_samples)
|
||||
|
||||
def _forward(self,
|
||||
inputs: Tensor,
|
||||
data_samples: OptSampleList = None) -> Tensor:
|
||||
"""Network forward process.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Inputs with shape (N, C, H, W).
|
||||
data_samples (List[:obj:`SegDataSample`]): The seg
|
||||
data samples. It usually includes information such
|
||||
as `metainfo` and `gt_sem_seg`.
|
||||
|
||||
Returns:
|
||||
Tensor: Forward output of model without any post-processes.
|
||||
"""
|
||||
x = self.extract_feat(inputs)
|
||||
return self.decode_head.forward(x)
|
||||
|
||||
def slide_inference(self, inputs: Tensor,
|
||||
batch_img_metas: List[dict]) -> Tensor:
|
||||
"""Inference by sliding-window with overlap.
|
||||
|
||||
If h_crop > h_img or w_crop > w_img, the small patch will be used to
|
||||
decode without padding.
|
||||
|
||||
Args:
|
||||
inputs (tensor): the tensor should have a shape NxCxHxW,
|
||||
which contains all images in the batch.
|
||||
batch_img_metas (List[dict]): List of image metainfo where each may
|
||||
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
||||
'ori_shape', and 'pad_shape'.
|
||||
For details on the values of these keys see
|
||||
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
||||
|
||||
Returns:
|
||||
Tensor: The segmentation results, seg_logits from model of each
|
||||
input image.
|
||||
"""
|
||||
|
||||
h_stride, w_stride = self.test_cfg.stride
|
||||
h_crop, w_crop = self.test_cfg.crop_size
|
||||
batch_size, _, h_img, w_img = inputs.size()
|
||||
out_channels = self.out_channels
|
||||
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
|
||||
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
|
||||
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
|
||||
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
|
||||
for h_idx in range(h_grids):
|
||||
for w_idx in range(w_grids):
|
||||
y1 = h_idx * h_stride
|
||||
x1 = w_idx * w_stride
|
||||
y2 = min(y1 + h_crop, h_img)
|
||||
x2 = min(x1 + w_crop, w_img)
|
||||
y1 = max(y2 - h_crop, 0)
|
||||
x1 = max(x2 - w_crop, 0)
|
||||
crop_img = inputs[:, :, y1:y2, x1:x2]
|
||||
# change the image shape to patch shape
|
||||
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
|
||||
# the output of encode_decode is seg logits tensor map
|
||||
# with shape [N, C, H, W]
|
||||
crop_seg_logit = self.encode_decode(crop_img, batch_img_metas)
|
||||
preds += F.pad(crop_seg_logit,
|
||||
(int(x1), int(preds.shape[3] - x2), int(y1),
|
||||
int(preds.shape[2] - y2)))
|
||||
|
||||
count_mat[:, :, y1:y2, x1:x2] += 1
|
||||
assert (count_mat == 0).sum() == 0
|
||||
seg_logits = preds / count_mat
|
||||
|
||||
return seg_logits
|
||||
|
||||
def whole_inference(self, inputs: Tensor,
|
||||
batch_img_metas: List[dict]) -> Tensor:
|
||||
"""Inference with full image.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): The tensor should have a shape NxCxHxW, which
|
||||
contains all images in the batch.
|
||||
batch_img_metas (List[dict]): List of image metainfo where each may
|
||||
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
||||
'ori_shape', and 'pad_shape'.
|
||||
For details on the values of these keys see
|
||||
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
||||
|
||||
Returns:
|
||||
Tensor: The segmentation results, seg_logits from model of each
|
||||
input image.
|
||||
"""
|
||||
|
||||
seg_logits = self.encode_decode(inputs, batch_img_metas)
|
||||
|
||||
return seg_logits
|
||||
|
||||
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
|
||||
"""Inference with slide/whole style.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): The input image of shape (N, 3, H, W).
|
||||
batch_img_metas (List[dict]): List of image metainfo where each may
|
||||
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
|
||||
'ori_shape', 'pad_shape', and 'padding_size'.
|
||||
For details on the values of these keys see
|
||||
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
|
||||
|
||||
Returns:
|
||||
Tensor: The segmentation results, seg_logits from model of each
|
||||
input image.
|
||||
"""
|
||||
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole'], \
|
||||
f'Only "slide" or "whole" test mode are supported, but got ' \
|
||||
f'{self.test_cfg["mode"]}.'
|
||||
ori_shape = batch_img_metas[0]['ori_shape']
|
||||
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
|
||||
print_log(
|
||||
'Image shapes are different in the batch.',
|
||||
logger='current',
|
||||
level=logging.WARN)
|
||||
if self.test_cfg.mode == 'slide':
|
||||
seg_logit = self.slide_inference(inputs, batch_img_metas)
|
||||
else:
|
||||
seg_logit = self.whole_inference(inputs, batch_img_metas)
|
||||
|
||||
return seg_logit
|
||||
|
||||
def aug_test(self, inputs, batch_img_metas, rescale=True):
|
||||
"""Test with augmentations.
|
||||
|
||||
Only rescale=True is supported.
|
||||
"""
|
||||
# aug_test rescale all imgs back to ori_shape for now
|
||||
assert rescale
|
||||
# to save memory, we get augmented seg logit inplace
|
||||
seg_logit = self.inference(inputs[0], batch_img_metas[0], rescale)
|
||||
for i in range(1, len(inputs)):
|
||||
cur_seg_logit = self.inference(inputs[i], batch_img_metas[i],
|
||||
rescale)
|
||||
seg_logit += cur_seg_logit
|
||||
seg_logit /= len(inputs)
|
||||
seg_pred = seg_logit.argmax(dim=1)
|
||||
# unravel batch dim
|
||||
seg_pred = list(seg_pred)
|
||||
return seg_pred
|
||||
Reference in New Issue
Block a user