init
This commit is contained in:
138
finetune/mmseg/models/segmentors/cascade_encoder_decoder.py
Normal file
138
finetune/mmseg/models/segmentors/cascade_encoder_decoder.py
Normal file
@@ -0,0 +1,138 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import List, Optional
|
||||
|
||||
from torch import Tensor, nn
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
|
||||
OptSampleList, SampleList, add_prefix)
|
||||
from .encoder_decoder import EncoderDecoder
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class CascadeEncoderDecoder(EncoderDecoder):
|
||||
"""Cascade Encoder Decoder segmentors.
|
||||
|
||||
CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of
|
||||
CascadeEncoderDecoder are cascaded. The output of previous decoder_head
|
||||
will be the input of next decoder_head.
|
||||
|
||||
Args:
|
||||
|
||||
num_stages (int): How many stages will be cascaded.
|
||||
backbone (ConfigType): The config for the backnone of segmentor.
|
||||
decode_head (ConfigType): The config for the decode head of segmentor.
|
||||
neck (OptConfigType): The config for the neck of segmentor.
|
||||
Defaults to None.
|
||||
auxiliary_head (OptConfigType): The config for the auxiliary head of
|
||||
segmentor. Defaults to None.
|
||||
train_cfg (OptConfigType): The config for training. Defaults to None.
|
||||
test_cfg (OptConfigType): The config for testing. Defaults to None.
|
||||
data_preprocessor (dict, optional): The pre-process config of
|
||||
:class:`BaseDataPreprocessor`.
|
||||
pretrained (str, optional): The path for pretrained model.
|
||||
Defaults to None.
|
||||
init_cfg (dict, optional): The weight initialized config for
|
||||
:class:`BaseModule`.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_stages: int,
|
||||
backbone: ConfigType,
|
||||
decode_head: ConfigType,
|
||||
neck: OptConfigType = None,
|
||||
auxiliary_head: OptConfigType = None,
|
||||
train_cfg: OptConfigType = None,
|
||||
test_cfg: OptConfigType = None,
|
||||
data_preprocessor: OptConfigType = None,
|
||||
pretrained: Optional[str] = None,
|
||||
init_cfg: OptMultiConfig = None):
|
||||
self.num_stages = num_stages
|
||||
super().__init__(
|
||||
backbone=backbone,
|
||||
decode_head=decode_head,
|
||||
neck=neck,
|
||||
auxiliary_head=auxiliary_head,
|
||||
train_cfg=train_cfg,
|
||||
test_cfg=test_cfg,
|
||||
data_preprocessor=data_preprocessor,
|
||||
pretrained=pretrained,
|
||||
init_cfg=init_cfg)
|
||||
|
||||
def _init_decode_head(self, decode_head: ConfigType) -> None:
|
||||
"""Initialize ``decode_head``"""
|
||||
assert isinstance(decode_head, list)
|
||||
assert len(decode_head) == self.num_stages
|
||||
self.decode_head = nn.ModuleList()
|
||||
for i in range(self.num_stages):
|
||||
self.decode_head.append(MODELS.build(decode_head[i]))
|
||||
self.align_corners = self.decode_head[-1].align_corners
|
||||
self.num_classes = self.decode_head[-1].num_classes
|
||||
self.out_channels = self.decode_head[-1].out_channels
|
||||
|
||||
def encode_decode(self, inputs: Tensor,
|
||||
batch_img_metas: List[dict]) -> Tensor:
|
||||
"""Encode images with backbone and decode into a semantic segmentation
|
||||
map of the same size as input."""
|
||||
x = self.extract_feat(inputs)
|
||||
out = self.decode_head[0].forward(x)
|
||||
for i in range(1, self.num_stages - 1):
|
||||
out = self.decode_head[i].forward(x, out)
|
||||
seg_logits_list = self.decode_head[-1].predict(x, out, batch_img_metas,
|
||||
self.test_cfg)
|
||||
|
||||
return seg_logits_list
|
||||
|
||||
def _decode_head_forward_train(self, inputs: Tensor,
|
||||
data_samples: SampleList) -> dict:
|
||||
"""Run forward function and calculate loss for decode head in
|
||||
training."""
|
||||
losses = dict()
|
||||
|
||||
loss_decode = self.decode_head[0].loss(inputs, data_samples,
|
||||
self.train_cfg)
|
||||
|
||||
losses.update(add_prefix(loss_decode, 'decode_0'))
|
||||
# get batch_img_metas
|
||||
batch_size = len(data_samples)
|
||||
batch_img_metas = []
|
||||
for batch_index in range(batch_size):
|
||||
metainfo = data_samples[batch_index].metainfo
|
||||
batch_img_metas.append(metainfo)
|
||||
|
||||
for i in range(1, self.num_stages):
|
||||
# forward test again, maybe unnecessary for most methods.
|
||||
if i == 1:
|
||||
prev_outputs = self.decode_head[0].forward(inputs)
|
||||
else:
|
||||
prev_outputs = self.decode_head[i - 1].forward(
|
||||
inputs, prev_outputs)
|
||||
loss_decode = self.decode_head[i].loss(inputs, prev_outputs,
|
||||
data_samples,
|
||||
self.train_cfg)
|
||||
losses.update(add_prefix(loss_decode, f'decode_{i}'))
|
||||
|
||||
return losses
|
||||
|
||||
def _forward(self,
|
||||
inputs: Tensor,
|
||||
data_samples: OptSampleList = None) -> Tensor:
|
||||
"""Network forward process.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Inputs with shape (N, C, H, W).
|
||||
data_samples (List[:obj:`SegDataSample`]): The seg data samples.
|
||||
It usually includes information such as `metainfo` and
|
||||
`gt_semantic_seg`.
|
||||
|
||||
Returns:
|
||||
Tensor: Forward output of model without any post-processes.
|
||||
"""
|
||||
x = self.extract_feat(inputs)
|
||||
|
||||
out = self.decode_head[0].forward(x)
|
||||
for i in range(1, self.num_stages):
|
||||
# TODO support PointRend tensor mode
|
||||
out = self.decode_head[i].forward(x, out)
|
||||
|
||||
return out
|
||||
Reference in New Issue
Block a user