This commit is contained in:
esenke
2025-12-08 22:16:31 +08:00
commit 01adcfdf60
305 changed files with 50879 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .base import BaseSegmentor
from .cascade_encoder_decoder import CascadeEncoderDecoder
from .depth_estimator import DepthEstimator
from .encoder_decoder import EncoderDecoder
from .multimodal_encoder_decoder import MultimodalEncoderDecoder
from .seg_tta import SegTTAModel
__all__ = [
'BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder', 'SegTTAModel',
'MultimodalEncoderDecoder', 'DepthEstimator'
]

View File

@@ -0,0 +1,200 @@
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import List, Tuple
from mmengine.model import BaseModel
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.structures import SegDataSample
from mmseg.utils import (ForwardResults, OptConfigType, OptMultiConfig,
OptSampleList, SampleList)
from ..utils import resize
class BaseSegmentor(BaseModel, metaclass=ABCMeta):
"""Base class for segmentors.
Args:
data_preprocessor (dict, optional): Model preprocessing config
for processing the input data. it usually includes
``to_rgb``, ``pad_size_divisor``, ``pad_val``,
``mean`` and ``std``. Default to None.
init_cfg (dict, optional): the config to control the
initialization. Default to None.
"""
def __init__(self,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
@property
def with_neck(self) -> bool:
"""bool: whether the segmentor has neck"""
return hasattr(self, 'neck') and self.neck is not None
@property
def with_auxiliary_head(self) -> bool:
"""bool: whether the segmentor has auxiliary head"""
return hasattr(self,
'auxiliary_head') and self.auxiliary_head is not None
@property
def with_decode_head(self) -> bool:
"""bool: whether the segmentor has decode head"""
return hasattr(self, 'decode_head') and self.decode_head is not None
@abstractmethod
def extract_feat(self, inputs: Tensor) -> bool:
"""Placeholder for extract features from images."""
pass
@abstractmethod
def encode_decode(self, inputs: Tensor, batch_data_samples: SampleList):
"""Placeholder for encode images with backbone and decode into a
semantic segmentation map of the same size as input."""
pass
def forward(self,
inputs: Tensor,
data_samples: OptSampleList = None,
mode: str = 'tensor') -> ForwardResults:
"""The unified entry for a forward process in both training and test.
The method should accept three modes: "tensor", "predict" and "loss":
- "tensor": Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- "predict": Forward and return the predictions, which are fully
processed to a list of :obj:`SegDataSample`.
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor): The input tensor with shape (N, C, ...) in
general.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`. Default to None.
mode (str): Return what kind of value. Defaults to 'tensor'.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of :obj:`DetDataSample`.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(inputs, data_samples)
elif mode == 'predict':
return self.predict(inputs, data_samples)
elif mode == 'tensor':
return self._forward(inputs, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode')
@abstractmethod
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples."""
pass
@abstractmethod
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing."""
pass
@abstractmethod
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tuple[List[Tensor]]:
"""Network forward process.
Usually includes backbone, neck and head forward without any post-
processing.
"""
pass
def postprocess_result(self,
seg_logits: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
seg_logits (Tensor): The segmentation results, seg_logits from
model of each input image.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Segmentation results of the
input images. Each SegDataSample usually contain:
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic
segmentation before normalization.
"""
batch_size, C, H, W = seg_logits.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_seg_logits shape is 1, C, H, W after remove padding
i_seg_logits = seg_logits[i:i + 1, :,
padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_seg_logits = i_seg_logits.flip(dims=(3, ))
else:
i_seg_logits = i_seg_logits.flip(dims=(2, ))
# resize as original shape
i_seg_logits = resize(
i_seg_logits,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_seg_logits = seg_logits[i]
if C > 1:
i_seg_pred = i_seg_logits.argmax(dim=0, keepdim=True)
else:
i_seg_logits = i_seg_logits.sigmoid()
i_seg_pred = (i_seg_logits >
self.decode_head.threshold).to(i_seg_logits)
data_samples[i].set_data({
'seg_logits':
PixelData(**{'data': i_seg_logits}),
'pred_sem_seg':
PixelData(**{'data': i_seg_pred})
})
return data_samples

View File

@@ -0,0 +1,138 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional
from torch import Tensor, nn
from mmseg.registry import MODELS
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from .encoder_decoder import EncoderDecoder
@MODELS.register_module()
class CascadeEncoderDecoder(EncoderDecoder):
"""Cascade Encoder Decoder segmentors.
CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of
CascadeEncoderDecoder are cascaded. The output of previous decoder_head
will be the input of next decoder_head.
Args:
num_stages (int): How many stages will be cascaded.
backbone (ConfigType): The config for the backnone of segmentor.
decode_head (ConfigType): The config for the decode head of segmentor.
neck (OptConfigType): The config for the neck of segmentor.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
segmentor. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
"""
def __init__(self,
num_stages: int,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
self.num_stages = num_stages
super().__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
pretrained=pretrained,
init_cfg=init_cfg)
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``"""
assert isinstance(decode_head, list)
assert len(decode_head) == self.num_stages
self.decode_head = nn.ModuleList()
for i in range(self.num_stages):
self.decode_head.append(MODELS.build(decode_head[i]))
self.align_corners = self.decode_head[-1].align_corners
self.num_classes = self.decode_head[-1].num_classes
self.out_channels = self.decode_head[-1].out_channels
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a semantic segmentation
map of the same size as input."""
x = self.extract_feat(inputs)
out = self.decode_head[0].forward(x)
for i in range(1, self.num_stages - 1):
out = self.decode_head[i].forward(x, out)
seg_logits_list = self.decode_head[-1].predict(x, out, batch_img_metas,
self.test_cfg)
return seg_logits_list
def _decode_head_forward_train(self, inputs: Tensor,
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head[0].loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode_0'))
# get batch_img_metas
batch_size = len(data_samples)
batch_img_metas = []
for batch_index in range(batch_size):
metainfo = data_samples[batch_index].metainfo
batch_img_metas.append(metainfo)
for i in range(1, self.num_stages):
# forward test again, maybe unnecessary for most methods.
if i == 1:
prev_outputs = self.decode_head[0].forward(inputs)
else:
prev_outputs = self.decode_head[i - 1].forward(
inputs, prev_outputs)
loss_decode = self.decode_head[i].loss(inputs, prev_outputs,
data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, f'decode_{i}'))
return losses
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_semantic_seg`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
out = self.decode_head[0].forward(x)
for i in range(1, self.num_stages):
# TODO support PointRend tensor mode
out = self.decode_head[i].forward(x, out)
return out

View File

@@ -0,0 +1,392 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from ..utils import resize
from .encoder_decoder import EncoderDecoder
@MODELS.register_module()
class DepthEstimator(EncoderDecoder):
"""Encoder Decoder depth estimator.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict depth estimation results,
which includes two steps: (1) Run inference function to obtain the list of
depth (2) Call post-processing function to obtain list of
``SegDataSample`` including ``pred_depth_map``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (ConfigType): The config for the backnone of depth estimator.
decode_head (ConfigType): The config for the decode head of depth estimator.
neck (OptConfigType): The config for the neck of depth estimator.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
depth estimator. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
super().__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
pretrained=pretrained,
init_cfg=init_cfg)
def extract_feat(self,
inputs: Tensor,
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
"""Extract features from images."""
if getattr(self.backbone, 'class_embed_select', False) and \
isinstance(batch_img_metas, list) and \
'category_id' in batch_img_metas[0]:
cat_ids = [meta['category_id'] for meta in batch_img_metas]
cat_ids = torch.tensor(cat_ids).to(inputs.device)
inputs = (inputs, cat_ids)
x = self.backbone(inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a depth map of the same
size as input."""
x = self.extract_feat(inputs, batch_img_metas)
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
return depth
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for auxiliary head in
training."""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
x = self.extract_feat(inputs, batch_img_metas)
losses = dict()
loss_decode = self._decode_head_forward_train(x, data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
losses.update(loss_aux)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_depth_map`.
Returns:
list[:obj:`SegDataSample`]: Depth estimation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
depth = self.inference(inputs, batch_img_metas)
return self.postprocess_result(depth, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_depth_map`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_flip_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap and flip.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is depth tensor map
# with shape [N, C, H, W]
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
# average out the original and flipped prediction
crop_depth_map_flip = self.encode_decode(
crop_img.flip(dims=(3, )), batch_img_metas)
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
preds += F.pad(crop_depth_map,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
depth = preds / count_mat
return depth
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
'slide_flip'], \
f'Only "slide", "slide_flip" or "whole" test mode are ' \
f'supported, but got {self.test_cfg["mode"]}.'
ori_shape = batch_img_metas[0]['ori_shape']
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
print_log(
'Image shapes are different in the batch.',
logger='current',
level=logging.WARN)
if self.test_cfg.mode == 'slide':
depth_map = self.slide_inference(inputs, batch_img_metas)
if self.test_cfg.mode == 'slide_flip':
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
else:
depth_map = self.whole_inference(inputs, batch_img_metas)
return depth_map
def postprocess_result(self,
depth: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
depth (Tensor): The depth estimation results.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Depth estomation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
"""
batch_size, C, H, W = depth.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_depth shape is 1, C, H, W after remove padding
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_depth = i_depth.flip(dims=(3, ))
else:
i_depth = i_depth.flip(dims=(2, ))
# resize as original shape
i_depth = resize(
i_depth,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_depth = depth[i]
data_samples[i].set_data(
{'pred_depth_map': PixelData(**{'data': i_depth})})
return data_samples

View File

@@ -0,0 +1,364 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from .base import BaseSegmentor
@MODELS.register_module()
class EncoderDecoder(BaseSegmentor):
"""Encoder Decoder segmentors.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict segmentation results,
which includes two steps: (1) Run inference function to obtain the list of
seg_logits (2) Call post-processing function to obtain list of
``SegDataSample`` including ``pred_sem_seg`` and ``seg_logits``.
.. code:: text
predict(): inference() -> postprocess_result()
infercen(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (ConfigType): The config for the backnone of segmentor.
decode_head (ConfigType): The config for the decode head of segmentor.
neck (OptConfigType): The config for the neck of segmentor.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
segmentor. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
if pretrained is not None:
assert backbone.get('pretrained') is None, \
'both backbone and segmentor set pretrained weight'
backbone.pretrained = pretrained
self.backbone = MODELS.build(backbone)
if neck is not None:
self.neck = MODELS.build(neck)
self._init_decode_head(decode_head)
self._init_auxiliary_head(auxiliary_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
assert self.with_decode_head
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``"""
self.decode_head = MODELS.build(decode_head)
self.align_corners = self.decode_head.align_corners
self.num_classes = self.decode_head.num_classes
self.out_channels = self.decode_head.out_channels
def _init_auxiliary_head(self, auxiliary_head: ConfigType) -> None:
"""Initialize ``auxiliary_head``"""
if auxiliary_head is not None:
if isinstance(auxiliary_head, list):
self.auxiliary_head = nn.ModuleList()
for head_cfg in auxiliary_head:
self.auxiliary_head.append(MODELS.build(head_cfg))
else:
self.auxiliary_head = MODELS.build(auxiliary_head)
def extract_feat(self, inputs: Tensor) -> List[Tensor]:
"""Extract features from images."""
x = self.backbone(inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a semantic segmentation
map of the same size as input."""
x = self.extract_feat(inputs)
seg_logits = self.decode_head.predict(x, batch_img_metas,
self.test_cfg)
return seg_logits
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for auxiliary head in
training."""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
x = self.extract_feat(inputs)
losses = dict()
loss_decode = self._decode_head_forward_train(x, data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
losses.update(loss_aux)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_sem_seg`.
Returns:
list[:obj:`SegDataSample`]: Segmentation results of the
input images. Each SegDataSample usually contain:
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic
segmentation before normalization.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
seg_logits = self.inference(inputs, batch_img_metas)
return self.postprocess_result(seg_logits, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_sem_seg`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is seg logits tensor map
# with shape [N, C, H, W]
crop_seg_logit = self.encode_decode(crop_img, batch_img_metas)
preds += F.pad(crop_seg_logit,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
seg_logits = preds / count_mat
return seg_logits
def whole_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference with full image.
Args:
inputs (Tensor): The tensor should have a shape NxCxHxW, which
contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
seg_logits = self.encode_decode(inputs, batch_img_metas)
return seg_logits
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole'], \
f'Only "slide" or "whole" test mode are supported, but got ' \
f'{self.test_cfg["mode"]}.'
ori_shape = batch_img_metas[0]['ori_shape']
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
print_log(
'Image shapes are different in the batch.',
logger='current',
level=logging.WARN)
if self.test_cfg.mode == 'slide':
seg_logit = self.slide_inference(inputs, batch_img_metas)
else:
seg_logit = self.whole_inference(inputs, batch_img_metas)
return seg_logit
def aug_test(self, inputs, batch_img_metas, rescale=True):
"""Test with augmentations.
Only rescale=True is supported.
"""
# aug_test rescale all imgs back to ori_shape for now
assert rescale
# to save memory, we get augmented seg logit inplace
seg_logit = self.inference(inputs[0], batch_img_metas[0], rescale)
for i in range(1, len(inputs)):
cur_seg_logit = self.inference(inputs[i], batch_img_metas[i],
rescale)
seg_logit += cur_seg_logit
seg_logit /= len(inputs)
seg_pred = seg_logit.argmax(dim=1)
# unravel batch dim
seg_pred = list(seg_pred)
return seg_pred

View File

@@ -0,0 +1,350 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional
import torch.nn.functional as F
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from .base import BaseSegmentor
@MODELS.register_module()
class MultimodalEncoderDecoder(BaseSegmentor):
"""Multimodal Encoder-Decoder segmentors.
Multimodal segmentation architecture is used for open-vocabulary
semantic segmentation with combining the visual and language
pretrain models. It consists of a image_encoder (backbone) to extract
visual feature, a text encoder to extract text feature, and a decode
head to generate semantic maps.
Note that the deep supervision during training is implemented in decode head.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train()
_decode_head_forward_train(): decode_head.loss()
2. The ``predict`` method is used to predict segmentation results,
which includes two steps: (1) Run inference function to obtain the list of
seg_logits (2) Call post-processing function to obtain list of
``SegDataSampel`` including ``pred_sem_seg`` and ``seg_logits``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
image_encoder (ConfigType): The config for the visual encoder of segmentor.
text_encoder ((ConfigType): The config for the text encoder of segmentor.
decode_head (ConfigType): The config for the decode head of segmentor.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
asymetric_input (bool): whether to use different size of input for image encoder
and decode head. Defaults to False.
encoder_resolution (float): resize scale of input images for image encoder.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
image_encoder: ConfigType,
text_encoder: ConfigType,
decode_head: ConfigType,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
asymetric_input: bool = True,
encoder_resolution: float = None,
init_cfg: OptMultiConfig = None):
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
if pretrained is not None:
image_encoder.init_cfg = dict(
type='Pretrained_Part', checkpoint=pretrained)
text_encoder.init_cfg = dict(
type='Pretrained_Part', checkpoint=pretrained)
decode_head.init_cfg = dict(
type='Pretrained_Part', checkpoint=pretrained)
if asymetric_input:
assert encoder_resolution is not None, \
'if asymetric_input set True, ' \
'clip_resolution must be a certain value'
self.asymetric_input = asymetric_input
self.encoder_resolution = encoder_resolution
self.image_encoder = MODELS.build(image_encoder)
self.text_encoder = MODELS.build(text_encoder)
self._init_decode_head(decode_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
assert self.with_decode_head
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``"""
self.decode_head = MODELS.build(decode_head)
self.align_corners = self.decode_head.align_corners
self.num_classes = self.decode_head.num_classes
self.out_channels = self.decode_head.out_channels
def extract_feat(self, inputs: Tensor) -> List[Tensor]:
"""Extract visual features from images."""
x = self.image_encoder(inputs)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode the name of classes with text_encoder and encode images with
image_encoder.
Then decode the class embedding and visual feature into a semantic
segmentation map of the same size as input.
"""
classifier_embeds = self.text_encoder()
clip_inputs = inputs
if self.asymetric_input:
clip_inputs = F.interpolate(
inputs, scale_factor=self.encoder_resolution, mode='bilinear')
x = self.image_encoder(clip_inputs)
seg_logits = self.decode_head.predict([inputs, x, classifier_embeds],
batch_img_metas, self.test_cfg)
return seg_logits
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
classifier_embeds = self.text_encoder()
clip_inputs = inputs
if self.asymetric_input:
clip_inputs = F.interpolate(
inputs, scale_factor=self.encoder_resolution, mode='bilinear')
x = self.image_encoder(clip_inputs)
losses = dict()
loss_decode = self._decode_head_forward_train(
[inputs, x, classifier_embeds], data_samples)
losses.update(loss_decode)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_sem_seg`.
Returns:
list[:obj:`SegDataSample`]: Segmentation results of the
input images. Each SegDataSample usually contain:
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic
segmentation before normalization.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
seg_logits = self.inference(inputs, batch_img_metas)
return self.postprocess_result(seg_logits, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_sem_seg`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is seg logits tensor map
# with shape [N, C, H, W]
crop_seg_logit = self.encode_decode(crop_img, batch_img_metas)
preds += F.pad(crop_seg_logit,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
seg_logits = preds / count_mat
return seg_logits
def whole_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference with full image.
Args:
inputs (Tensor): The tensor should have a shape NxCxHxW, which
contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
seg_logits = self.encode_decode(inputs, batch_img_metas)
return seg_logits
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
assert self.test_cfg.mode in ['slide', 'whole']
ori_shape = batch_img_metas[0]['ori_shape']
assert all(_['ori_shape'] == ori_shape for _ in batch_img_metas)
if self.test_cfg.mode == 'slide':
seg_logit = self.slide_inference(inputs, batch_img_metas)
else:
seg_logit = self.whole_inference(inputs, batch_img_metas)
return seg_logit
def aug_test(self, inputs, batch_img_metas, rescale=True):
"""Test with augmentations.
Only rescale=True is supported.
"""
# aug_test rescale all imgs back to ori_shape for now
assert rescale
# to save memory, we get augmented seg logit inplace
seg_logit = self.inference(inputs[0], batch_img_metas[0], rescale)
for i in range(1, len(inputs)):
cur_seg_logit = self.inference(inputs[i], batch_img_metas[i],
rescale)
seg_logit += cur_seg_logit
seg_logit /= len(inputs)
seg_pred = seg_logit.argmax(dim=1)
# unravel batch dim
seg_pred = list(seg_pred)
return seg_pred

View File

@@ -0,0 +1,47 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
from mmengine.model import BaseTTAModel
from mmengine.structures import PixelData
from mmseg.registry import MODELS
from mmseg.utils import SampleList
@MODELS.register_module()
class SegTTAModel(BaseTTAModel):
def merge_preds(self, data_samples_list: List[SampleList]) -> SampleList:
"""Merge predictions of enhanced data to one prediction.
Args:
data_samples_list (List[SampleList]): List of predictions
of all enhanced data.
Returns:
SampleList: Merged prediction.
"""
predictions = []
for data_samples in data_samples_list:
seg_logits = data_samples[0].seg_logits.data
logits = torch.zeros(seg_logits.shape).to(seg_logits)
for data_sample in data_samples:
seg_logit = data_sample.seg_logits.data
if self.module.out_channels > 1:
logits += seg_logit.softmax(dim=0)
else:
logits += seg_logit.sigmoid()
logits /= len(data_samples)
if self.module.out_channels == 1:
seg_pred = (logits > self.module.decode_head.threshold
).to(logits).squeeze(1)
else:
seg_pred = logits.argmax(dim=0)
data_sample.set_data({'pred_sem_seg': PixelData(data=seg_pred)})
if hasattr(data_samples[0], 'gt_sem_seg'):
data_sample.set_data(
{'gt_sem_seg': data_samples[0].gt_sem_seg})
data_sample.set_metainfo({'img_path': data_samples[0].img_path})
predictions.append(data_sample)
return predictions