init
This commit is contained in:
79
finetune/mmseg/models/necks/multilevel_neck.py
Normal file
79
finetune/mmseg/models/necks/multilevel_neck.py
Normal file
@@ -0,0 +1,79 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch.nn as nn
|
||||
from mmcv.cnn import ConvModule
|
||||
from mmengine.model.weight_init import xavier_init
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
from ..utils import resize
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class MultiLevelNeck(nn.Module):
|
||||
"""MultiLevelNeck.
|
||||
|
||||
A neck structure connect vit backbone and decoder_heads.
|
||||
|
||||
Args:
|
||||
in_channels (List[int]): Number of input channels per scale.
|
||||
out_channels (int): Number of output channels (used at each scale).
|
||||
scales (List[float]): Scale factors for each input feature map.
|
||||
Default: [0.5, 1, 2, 4]
|
||||
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
||||
act_cfg (dict): Config dict for activation layer in ConvModule.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
scales=[0.5, 1, 2, 4],
|
||||
norm_cfg=None,
|
||||
act_cfg=None):
|
||||
super().__init__()
|
||||
assert isinstance(in_channels, list)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.scales = scales
|
||||
self.num_outs = len(scales)
|
||||
self.lateral_convs = nn.ModuleList()
|
||||
self.convs = nn.ModuleList()
|
||||
for in_channel in in_channels:
|
||||
self.lateral_convs.append(
|
||||
ConvModule(
|
||||
in_channel,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg))
|
||||
for _ in range(self.num_outs):
|
||||
self.convs.append(
|
||||
ConvModule(
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg))
|
||||
|
||||
# default init_weights for conv(msra) and norm in ConvModule
|
||||
def init_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
xavier_init(m, distribution='uniform')
|
||||
|
||||
def forward(self, inputs):
|
||||
assert len(inputs) == len(self.in_channels)
|
||||
inputs = [
|
||||
lateral_conv(inputs[i])
|
||||
for i, lateral_conv in enumerate(self.lateral_convs)
|
||||
]
|
||||
# for len(inputs) not equal to self.num_outs
|
||||
if len(inputs) == 1:
|
||||
inputs = [inputs[0] for _ in range(self.num_outs)]
|
||||
outs = []
|
||||
for i in range(self.num_outs):
|
||||
x_resize = resize(
|
||||
inputs[i], scale_factor=self.scales[i], mode='bilinear')
|
||||
outs.append(self.convs[i](x_resize))
|
||||
return tuple(outs)
|
||||
Reference in New Issue
Block a user