init
This commit is contained in:
148
finetune/mmseg/models/necks/ic_neck.py
Normal file
148
finetune/mmseg/models/necks/ic_neck.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import ConvModule
|
||||
from mmengine.model import BaseModule
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
from ..utils import resize
|
||||
|
||||
|
||||
class CascadeFeatureFusion(BaseModule):
|
||||
"""Cascade Feature Fusion Unit in ICNet.
|
||||
|
||||
Args:
|
||||
low_channels (int): The number of input channels for
|
||||
low resolution feature map.
|
||||
high_channels (int): The number of input channels for
|
||||
high resolution feature map.
|
||||
out_channels (int): The number of output channels.
|
||||
conv_cfg (dict): Dictionary to construct and config conv layer.
|
||||
Default: None.
|
||||
norm_cfg (dict): Dictionary to construct and config norm layer.
|
||||
Default: dict(type='BN').
|
||||
act_cfg (dict): Dictionary to construct and config act layer.
|
||||
Default: dict(type='ReLU').
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
Default: False.
|
||||
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||
Default: None.
|
||||
|
||||
Returns:
|
||||
x (Tensor): The output tensor of shape (N, out_channels, H, W).
|
||||
x_low (Tensor): The output tensor of shape (N, out_channels, H, W)
|
||||
for Cascade Label Guidance in auxiliary heads.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
low_channels,
|
||||
high_channels,
|
||||
out_channels,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='ReLU'),
|
||||
align_corners=False,
|
||||
init_cfg=None):
|
||||
super().__init__(init_cfg=init_cfg)
|
||||
self.align_corners = align_corners
|
||||
self.conv_low = ConvModule(
|
||||
low_channels,
|
||||
out_channels,
|
||||
3,
|
||||
padding=2,
|
||||
dilation=2,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
self.conv_high = ConvModule(
|
||||
high_channels,
|
||||
out_channels,
|
||||
1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg)
|
||||
|
||||
def forward(self, x_low, x_high):
|
||||
x_low = resize(
|
||||
x_low,
|
||||
size=x_high.size()[2:],
|
||||
mode='bilinear',
|
||||
align_corners=self.align_corners)
|
||||
# Note: Different from original paper, `x_low` is underwent
|
||||
# `self.conv_low` rather than another 1x1 conv classifier
|
||||
# before being used for auxiliary head.
|
||||
x_low = self.conv_low(x_low)
|
||||
x_high = self.conv_high(x_high)
|
||||
x = x_low + x_high
|
||||
x = F.relu(x, inplace=True)
|
||||
return x, x_low
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class ICNeck(BaseModule):
|
||||
"""ICNet for Real-Time Semantic Segmentation on High-Resolution Images.
|
||||
|
||||
This head is the implementation of `ICHead
|
||||
<https://arxiv.org/abs/1704.08545>`_.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input image channels. Default: 3.
|
||||
out_channels (int): The numbers of output feature channels.
|
||||
Default: 128.
|
||||
conv_cfg (dict): Dictionary to construct and config conv layer.
|
||||
Default: None.
|
||||
norm_cfg (dict): Dictionary to construct and config norm layer.
|
||||
Default: dict(type='BN').
|
||||
act_cfg (dict): Dictionary to construct and config act layer.
|
||||
Default: dict(type='ReLU').
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
Default: False.
|
||||
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=(64, 256, 256),
|
||||
out_channels=128,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='ReLU'),
|
||||
align_corners=False,
|
||||
init_cfg=None):
|
||||
super().__init__(init_cfg=init_cfg)
|
||||
assert len(in_channels) == 3, 'Length of input channels \
|
||||
must be 3!'
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.conv_cfg = conv_cfg
|
||||
self.norm_cfg = norm_cfg
|
||||
self.act_cfg = act_cfg
|
||||
self.align_corners = align_corners
|
||||
self.cff_24 = CascadeFeatureFusion(
|
||||
self.in_channels[2],
|
||||
self.in_channels[1],
|
||||
self.out_channels,
|
||||
conv_cfg=self.conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
act_cfg=self.act_cfg,
|
||||
align_corners=self.align_corners)
|
||||
|
||||
self.cff_12 = CascadeFeatureFusion(
|
||||
self.out_channels,
|
||||
self.in_channels[0],
|
||||
self.out_channels,
|
||||
conv_cfg=self.conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
act_cfg=self.act_cfg,
|
||||
align_corners=self.align_corners)
|
||||
|
||||
def forward(self, inputs):
|
||||
assert len(inputs) == 3, 'Length of input feature \
|
||||
maps must be 3!'
|
||||
|
||||
x_sub1, x_sub2, x_sub4 = inputs
|
||||
x_cff_24, x_24 = self.cff_24(x_sub4, x_sub2)
|
||||
x_cff_12, x_12 = self.cff_12(x_cff_24, x_sub1)
|
||||
# Note: `x_cff_12` is used for decode_head,
|
||||
# `x_24` and `x_12` are used for auxiliary head.
|
||||
return x_24, x_12, x_cff_12
|
||||
Reference in New Issue
Block a user