init
This commit is contained in:
62
finetune/mmseg/models/losses/boundary_loss.py
Normal file
62
finetune/mmseg/models/losses/boundary_loss.py
Normal file
@@ -0,0 +1,62 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class BoundaryLoss(nn.Module):
|
||||
"""Boundary loss.
|
||||
|
||||
This function is modified from
|
||||
`PIDNet <https://github.com/XuJiacong/PIDNet/blob/main/utils/criterion.py#L122>`_. # noqa
|
||||
Licensed under the MIT License.
|
||||
|
||||
|
||||
Args:
|
||||
loss_weight (float): Weight of the loss. Defaults to 1.0.
|
||||
loss_name (str): Name of the loss item. If you want this loss
|
||||
item to be included into the backward graph, `loss_` must be the
|
||||
prefix of the name. Defaults to 'loss_boundary'.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
loss_weight: float = 1.0,
|
||||
loss_name: str = 'loss_boundary'):
|
||||
super().__init__()
|
||||
self.loss_weight = loss_weight
|
||||
self.loss_name_ = loss_name
|
||||
|
||||
def forward(self, bd_pre: Tensor, bd_gt: Tensor) -> Tensor:
|
||||
"""Forward function.
|
||||
Args:
|
||||
bd_pre (Tensor): Predictions of the boundary head.
|
||||
bd_gt (Tensor): Ground truth of the boundary.
|
||||
|
||||
Returns:
|
||||
Tensor: Loss tensor.
|
||||
"""
|
||||
log_p = bd_pre.permute(0, 2, 3, 1).contiguous().view(1, -1)
|
||||
target_t = bd_gt.view(1, -1).float()
|
||||
|
||||
pos_index = (target_t == 1)
|
||||
neg_index = (target_t == 0)
|
||||
|
||||
weight = torch.zeros_like(log_p)
|
||||
pos_num = pos_index.sum()
|
||||
neg_num = neg_index.sum()
|
||||
sum_num = pos_num + neg_num
|
||||
weight[pos_index] = neg_num * 1.0 / sum_num
|
||||
weight[neg_index] = pos_num * 1.0 / sum_num
|
||||
|
||||
loss = F.binary_cross_entropy_with_logits(
|
||||
log_p, target_t, weight, reduction='mean')
|
||||
|
||||
return self.loss_weight * loss
|
||||
|
||||
@property
|
||||
def loss_name(self):
|
||||
return self.loss_name_
|
||||
Reference in New Issue
Block a user