init
This commit is contained in:
183
finetune/mmseg/models/decode_heads/pid_head.py
Normal file
183
finetune/mmseg/models/decode_heads/pid_head.py
Normal file
@@ -0,0 +1,183 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
|
||||
from mmengine.model import BaseModule
|
||||
from torch import Tensor
|
||||
|
||||
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
|
||||
from mmseg.models.losses import accuracy
|
||||
from mmseg.models.utils import resize
|
||||
from mmseg.registry import MODELS
|
||||
from mmseg.utils import OptConfigType, SampleList
|
||||
|
||||
|
||||
class BasePIDHead(BaseModule):
|
||||
"""Base class for PID head.
|
||||
|
||||
Args:
|
||||
in_channels (int): Number of input channels.
|
||||
channels (int): Number of output channels.
|
||||
norm_cfg (dict): Config dict for normalization layer.
|
||||
Default: dict(type='BN').
|
||||
act_cfg (dict): Config dict for activation layer.
|
||||
Default: dict(type='ReLU', inplace=True).
|
||||
init_cfg (dict or list[dict], optional): Init config dict.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels: int,
|
||||
channels: int,
|
||||
norm_cfg: OptConfigType = dict(type='BN'),
|
||||
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
|
||||
init_cfg: OptConfigType = None):
|
||||
super().__init__(init_cfg)
|
||||
self.conv = ConvModule(
|
||||
in_channels,
|
||||
channels,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg,
|
||||
order=('norm', 'act', 'conv'))
|
||||
_, self.norm = build_norm_layer(norm_cfg, num_features=channels)
|
||||
self.act = build_activation_layer(act_cfg)
|
||||
|
||||
def forward(self, x: Tensor, cls_seg: Optional[nn.Module]) -> Tensor:
|
||||
"""Forward function.
|
||||
Args:
|
||||
x (Tensor): Input tensor.
|
||||
cls_seg (nn.Module, optional): The classification head.
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor.
|
||||
"""
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
x = self.act(x)
|
||||
if cls_seg is not None:
|
||||
x = cls_seg(x)
|
||||
return x
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class PIDHead(BaseDecodeHead):
|
||||
"""Decode head for PIDNet.
|
||||
|
||||
Args:
|
||||
in_channels (int): Number of input channels.
|
||||
channels (int): Number of output channels.
|
||||
num_classes (int): Number of classes.
|
||||
norm_cfg (dict): Config dict for normalization layer.
|
||||
Default: dict(type='BN').
|
||||
act_cfg (dict): Config dict for activation layer.
|
||||
Default: dict(type='ReLU', inplace=True).
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels: int,
|
||||
channels: int,
|
||||
num_classes: int,
|
||||
norm_cfg: OptConfigType = dict(type='BN'),
|
||||
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
|
||||
**kwargs):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
channels,
|
||||
num_classes=num_classes,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg,
|
||||
**kwargs)
|
||||
self.i_head = BasePIDHead(in_channels, channels, norm_cfg, act_cfg)
|
||||
self.p_head = BasePIDHead(in_channels // 2, channels, norm_cfg,
|
||||
act_cfg)
|
||||
self.d_head = BasePIDHead(
|
||||
in_channels // 2,
|
||||
in_channels // 4,
|
||||
norm_cfg,
|
||||
)
|
||||
self.p_cls_seg = nn.Conv2d(channels, self.out_channels, kernel_size=1)
|
||||
self.d_cls_seg = nn.Conv2d(in_channels // 4, 1, kernel_size=1)
|
||||
|
||||
def init_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs: Union[Tensor,
|
||||
Tuple[Tensor]]) -> Union[Tensor, Tuple[Tensor]]:
|
||||
"""Forward function.
|
||||
Args:
|
||||
inputs (Tensor | tuple[Tensor]): Input tensor or tuple of
|
||||
Tensor. When training, the input is a tuple of three tensors,
|
||||
(p_feat, i_feat, d_feat), and the output is a tuple of three
|
||||
tensors, (p_seg_logit, i_seg_logit, d_seg_logit).
|
||||
When inference, only the head of integral branch is used, and
|
||||
input is a tensor of integral feature map, and the output is
|
||||
the segmentation logit.
|
||||
|
||||
Returns:
|
||||
Tensor | tuple[Tensor]: Output tensor or tuple of tensors.
|
||||
"""
|
||||
if self.training:
|
||||
x_p, x_i, x_d = inputs
|
||||
x_p = self.p_head(x_p, self.p_cls_seg)
|
||||
x_i = self.i_head(x_i, self.cls_seg)
|
||||
x_d = self.d_head(x_d, self.d_cls_seg)
|
||||
return x_p, x_i, x_d
|
||||
else:
|
||||
return self.i_head(inputs, self.cls_seg)
|
||||
|
||||
def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tuple[Tensor]:
|
||||
gt_semantic_segs = [
|
||||
data_sample.gt_sem_seg.data for data_sample in batch_data_samples
|
||||
]
|
||||
gt_edge_segs = [
|
||||
data_sample.gt_edge_map.data for data_sample in batch_data_samples
|
||||
]
|
||||
gt_sem_segs = torch.stack(gt_semantic_segs, dim=0)
|
||||
gt_edge_segs = torch.stack(gt_edge_segs, dim=0)
|
||||
return gt_sem_segs, gt_edge_segs
|
||||
|
||||
def loss_by_feat(self, seg_logits: Tuple[Tensor],
|
||||
batch_data_samples: SampleList) -> dict:
|
||||
loss = dict()
|
||||
p_logit, i_logit, d_logit = seg_logits
|
||||
sem_label, bd_label = self._stack_batch_gt(batch_data_samples)
|
||||
p_logit = resize(
|
||||
input=p_logit,
|
||||
size=sem_label.shape[2:],
|
||||
mode='bilinear',
|
||||
align_corners=self.align_corners)
|
||||
i_logit = resize(
|
||||
input=i_logit,
|
||||
size=sem_label.shape[2:],
|
||||
mode='bilinear',
|
||||
align_corners=self.align_corners)
|
||||
d_logit = resize(
|
||||
input=d_logit,
|
||||
size=bd_label.shape[2:],
|
||||
mode='bilinear',
|
||||
align_corners=self.align_corners)
|
||||
sem_label = sem_label.squeeze(1)
|
||||
bd_label = bd_label.squeeze(1)
|
||||
loss['loss_sem_p'] = self.loss_decode[0](
|
||||
p_logit, sem_label, ignore_index=self.ignore_index)
|
||||
loss['loss_sem_i'] = self.loss_decode[1](i_logit, sem_label)
|
||||
loss['loss_bd'] = self.loss_decode[2](d_logit, bd_label)
|
||||
filler = torch.ones_like(sem_label) * self.ignore_index
|
||||
sem_bd_label = torch.where(
|
||||
torch.sigmoid(d_logit[:, 0, :, :]) > 0.8, sem_label, filler)
|
||||
loss['loss_sem_bd'] = self.loss_decode[3](i_logit, sem_bd_label)
|
||||
loss['acc_seg'] = accuracy(
|
||||
i_logit, sem_label, ignore_index=self.ignore_index)
|
||||
return loss
|
||||
Reference in New Issue
Block a user