init
This commit is contained in:
174
finetune/mmseg/models/decode_heads/maskformer_head.py
Normal file
174
finetune/mmseg/models/decode_heads/maskformer_head.py
Normal file
@@ -0,0 +1,174 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmengine.model import BaseModule
|
||||
|
||||
try:
|
||||
from mmdet.models.dense_heads import MaskFormerHead as MMDET_MaskFormerHead
|
||||
except ModuleNotFoundError:
|
||||
MMDET_MaskFormerHead = BaseModule
|
||||
|
||||
from mmengine.structures import InstanceData
|
||||
from torch import Tensor
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
from mmseg.structures.seg_data_sample import SegDataSample
|
||||
from mmseg.utils import ConfigType, SampleList
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class MaskFormerHead(MMDET_MaskFormerHead):
|
||||
"""Implements the MaskFormer head.
|
||||
|
||||
See `Per-Pixel Classification is Not All You Need for Semantic Segmentation
|
||||
<https://arxiv.org/pdf/2107.06278>`_ for details.
|
||||
|
||||
Args:
|
||||
num_classes (int): Number of classes. Default: 150.
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
Default: False.
|
||||
ignore_index (int): The label index to be ignored. Default: 255.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_classes: int = 150,
|
||||
align_corners: bool = False,
|
||||
ignore_index: int = 255,
|
||||
**kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.out_channels = kwargs['out_channels']
|
||||
self.align_corners = True
|
||||
self.num_classes = num_classes
|
||||
self.align_corners = align_corners
|
||||
self.out_channels = num_classes
|
||||
self.ignore_index = ignore_index
|
||||
|
||||
feat_channels = kwargs['feat_channels']
|
||||
self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
|
||||
|
||||
def _seg_data_to_instance_data(self, batch_data_samples: SampleList):
|
||||
"""Perform forward propagation to convert paradigm from MMSegmentation
|
||||
to MMDetection to ensure ``MMDET_MaskFormerHead`` could be called
|
||||
normally. Specifically, ``batch_gt_instances`` would be added.
|
||||
|
||||
Args:
|
||||
batch_data_samples (List[:obj:`SegDataSample`]): The Data
|
||||
Samples. It usually includes information such as
|
||||
`gt_sem_seg`.
|
||||
|
||||
Returns:
|
||||
tuple[Tensor]: A tuple contains two lists.
|
||||
|
||||
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
|
||||
gt_instance. It usually includes ``labels``, each is
|
||||
unique ground truth label id of images, with
|
||||
shape (num_gt, ) and ``masks``, each is ground truth
|
||||
masks of each instances of a image, shape (num_gt, h, w).
|
||||
- batch_img_metas (list[dict]): List of image meta information.
|
||||
"""
|
||||
batch_img_metas = []
|
||||
batch_gt_instances = []
|
||||
for data_sample in batch_data_samples:
|
||||
# Add `batch_input_shape` in metainfo of data_sample, which would
|
||||
# be used in MaskFormerHead of MMDetection.
|
||||
metainfo = data_sample.metainfo
|
||||
metainfo['batch_input_shape'] = metainfo['img_shape']
|
||||
data_sample.set_metainfo(metainfo)
|
||||
batch_img_metas.append(data_sample.metainfo)
|
||||
gt_sem_seg = data_sample.gt_sem_seg.data
|
||||
classes = torch.unique(
|
||||
gt_sem_seg,
|
||||
sorted=False,
|
||||
return_inverse=False,
|
||||
return_counts=False)
|
||||
|
||||
# remove ignored region
|
||||
gt_labels = classes[classes != self.ignore_index]
|
||||
|
||||
masks = []
|
||||
for class_id in gt_labels:
|
||||
masks.append(gt_sem_seg == class_id)
|
||||
|
||||
if len(masks) == 0:
|
||||
gt_masks = torch.zeros((0, gt_sem_seg.shape[-2],
|
||||
gt_sem_seg.shape[-1])).to(gt_sem_seg)
|
||||
else:
|
||||
gt_masks = torch.stack(masks).squeeze(1)
|
||||
|
||||
instance_data = InstanceData(
|
||||
labels=gt_labels, masks=gt_masks.long())
|
||||
batch_gt_instances.append(instance_data)
|
||||
return batch_gt_instances, batch_img_metas
|
||||
|
||||
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList,
|
||||
train_cfg: ConfigType) -> dict:
|
||||
"""Perform forward propagation and loss calculation of the decoder head
|
||||
on the features of the upstream network.
|
||||
|
||||
Args:
|
||||
x (tuple[Tensor]): Multi-level features from the upstream
|
||||
network, each is a 4D-tensor.
|
||||
batch_data_samples (List[:obj:`SegDataSample`]): The Data
|
||||
Samples. It usually includes information such as
|
||||
`gt_sem_seg`.
|
||||
train_cfg (ConfigType): Training config.
|
||||
|
||||
Returns:
|
||||
dict[str, Tensor]: a dictionary of loss components.
|
||||
"""
|
||||
# batch SegDataSample to InstanceDataSample
|
||||
batch_gt_instances, batch_img_metas = self._seg_data_to_instance_data(
|
||||
batch_data_samples)
|
||||
|
||||
# forward
|
||||
all_cls_scores, all_mask_preds = self(x, batch_data_samples)
|
||||
|
||||
# loss
|
||||
losses = self.loss_by_feat(all_cls_scores, all_mask_preds,
|
||||
batch_gt_instances, batch_img_metas)
|
||||
|
||||
return losses
|
||||
|
||||
def predict(self, x: Tuple[Tensor], batch_img_metas: List[dict],
|
||||
test_cfg: ConfigType) -> Tuple[Tensor]:
|
||||
"""Test without augmentaton.
|
||||
|
||||
Args:
|
||||
x (tuple[Tensor]): Multi-level features from the
|
||||
upstream network, each is a 4D-tensor.
|
||||
batch_img_metas (List[:obj:`SegDataSample`]): The Data
|
||||
Samples. It usually includes information such as
|
||||
`gt_sem_seg`.
|
||||
test_cfg (ConfigType): Test config.
|
||||
|
||||
Returns:
|
||||
Tensor: A tensor of segmentation mask.
|
||||
"""
|
||||
|
||||
batch_data_samples = []
|
||||
for metainfo in batch_img_metas:
|
||||
metainfo['batch_input_shape'] = metainfo['img_shape']
|
||||
batch_data_samples.append(SegDataSample(metainfo=metainfo))
|
||||
# Forward function of MaskFormerHead from MMDetection needs
|
||||
# 'batch_data_samples' as inputs, which is image shape actually.
|
||||
all_cls_scores, all_mask_preds = self(x, batch_data_samples)
|
||||
mask_cls_results = all_cls_scores[-1]
|
||||
mask_pred_results = all_mask_preds[-1]
|
||||
|
||||
# upsample masks
|
||||
img_shape = batch_img_metas[0]['batch_input_shape']
|
||||
mask_pred_results = F.interpolate(
|
||||
mask_pred_results,
|
||||
size=img_shape,
|
||||
mode='bilinear',
|
||||
align_corners=False)
|
||||
|
||||
# semantic inference
|
||||
cls_score = F.softmax(mask_cls_results, dim=-1)[..., :-1]
|
||||
mask_pred = mask_pred_results.sigmoid()
|
||||
seg_logits = torch.einsum('bqc,bqhw->bchw', cls_score, mask_pred)
|
||||
return seg_logits
|
||||
Reference in New Issue
Block a user