init
This commit is contained in:
63
finetune/mmseg/models/backbones/timm_backbone.py
Normal file
63
finetune/mmseg/models/backbones/timm_backbone.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
try:
|
||||
import timm
|
||||
except ImportError:
|
||||
timm = None
|
||||
|
||||
from mmengine.model import BaseModule
|
||||
from mmengine.registry import MODELS as MMENGINE_MODELS
|
||||
|
||||
from mmseg.registry import MODELS
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class TIMMBackbone(BaseModule):
|
||||
"""Wrapper to use backbones from timm library. More details can be found in
|
||||
`timm <https://github.com/rwightman/pytorch-image-models>`_ .
|
||||
|
||||
Args:
|
||||
model_name (str): Name of timm model to instantiate.
|
||||
pretrained (bool): Load pretrained weights if True.
|
||||
checkpoint_path (str): Path of checkpoint to load after
|
||||
model is initialized.
|
||||
in_channels (int): Number of input image channels. Default: 3.
|
||||
init_cfg (dict, optional): Initialization config dict
|
||||
**kwargs: Other timm & model specific arguments.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
features_only=True,
|
||||
pretrained=True,
|
||||
checkpoint_path='',
|
||||
in_channels=3,
|
||||
init_cfg=None,
|
||||
**kwargs,
|
||||
):
|
||||
if timm is None:
|
||||
raise RuntimeError('timm is not installed')
|
||||
super().__init__(init_cfg)
|
||||
if 'norm_layer' in kwargs:
|
||||
kwargs['norm_layer'] = MMENGINE_MODELS.get(kwargs['norm_layer'])
|
||||
self.timm_model = timm.create_model(
|
||||
model_name=model_name,
|
||||
features_only=features_only,
|
||||
pretrained=pretrained,
|
||||
in_chans=in_channels,
|
||||
checkpoint_path=checkpoint_path,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Make unused parameters None
|
||||
self.timm_model.global_pool = None
|
||||
self.timm_model.fc = None
|
||||
self.timm_model.classifier = None
|
||||
|
||||
# Hack to use pretrained weights from timm
|
||||
if pretrained or checkpoint_path:
|
||||
self._is_init = True
|
||||
|
||||
def forward(self, x):
|
||||
features = self.timm_model(x)
|
||||
return features
|
||||
Reference in New Issue
Block a user