init
This commit is contained in:
12
finetune/mmseg/models/assigners/__init__.py
Normal file
12
finetune/mmseg/models/assigners/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .base_assigner import BaseAssigner
|
||||
from .hungarian_assigner import HungarianAssigner
|
||||
from .match_cost import ClassificationCost, CrossEntropyLossCost, DiceCost
|
||||
|
||||
__all__ = [
|
||||
'BaseAssigner',
|
||||
'HungarianAssigner',
|
||||
'ClassificationCost',
|
||||
'CrossEntropyLossCost',
|
||||
'DiceCost',
|
||||
]
|
||||
18
finetune/mmseg/models/assigners/base_assigner.py
Normal file
18
finetune/mmseg/models/assigners/base_assigner.py
Normal file
@@ -0,0 +1,18 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from mmengine.structures import InstanceData
|
||||
|
||||
|
||||
class BaseAssigner(metaclass=ABCMeta):
|
||||
"""Base assigner that assigns masks to ground truth class labels."""
|
||||
|
||||
@abstractmethod
|
||||
def assign(self,
|
||||
pred_instances: InstanceData,
|
||||
gt_instances: InstanceData,
|
||||
gt_instances_ignore: Optional[InstanceData] = None,
|
||||
**kwargs):
|
||||
"""Assign masks to either a ground truth class label or a negative
|
||||
label."""
|
||||
86
finetune/mmseg/models/assigners/hungarian_assigner.py
Normal file
86
finetune/mmseg/models/assigners/hungarian_assigner.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import List, Union
|
||||
|
||||
import torch
|
||||
from mmengine import ConfigDict
|
||||
from mmengine.structures import InstanceData
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
from mmseg.registry import TASK_UTILS
|
||||
from .base_assigner import BaseAssigner
|
||||
|
||||
|
||||
@TASK_UTILS.register_module()
|
||||
class HungarianAssigner(BaseAssigner):
|
||||
"""Computes one-to-one matching between prediction masks and ground truth.
|
||||
|
||||
This class uses bipartite matching-based assignment to computes an
|
||||
assignment between the prediction masks and the ground truth. The
|
||||
assignment result is based on the weighted sum of match costs. The
|
||||
Hungarian algorithm is used to calculate the best matching with the
|
||||
minimum cost. The prediction masks that are not matched are classified
|
||||
as background.
|
||||
|
||||
Args:
|
||||
match_costs (ConfigDict|List[ConfigDict]): Match cost configs.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, match_costs: Union[List[Union[dict, ConfigDict]], dict,
|
||||
ConfigDict]
|
||||
) -> None:
|
||||
|
||||
if isinstance(match_costs, dict):
|
||||
match_costs = [match_costs]
|
||||
elif isinstance(match_costs, list):
|
||||
assert len(match_costs) > 0, \
|
||||
'match_costs must not be a empty list.'
|
||||
|
||||
self.match_costs = [
|
||||
TASK_UTILS.build(match_cost) for match_cost in match_costs
|
||||
]
|
||||
|
||||
def assign(self, pred_instances: InstanceData, gt_instances: InstanceData,
|
||||
**kwargs):
|
||||
"""Computes one-to-one matching based on the weighted costs.
|
||||
|
||||
This method assign each query prediction to a ground truth or
|
||||
background. The assignment first calculates the cost for each
|
||||
category assigned to each query mask, and then uses the
|
||||
Hungarian algorithm to calculate the minimum cost as the best
|
||||
match.
|
||||
|
||||
Args:
|
||||
pred_instances (InstanceData): Instances of model
|
||||
predictions. It includes "masks", with shape
|
||||
(n, h, w) or (n, l), and "cls", with shape (n, num_classes+1)
|
||||
gt_instances (InstanceData): Ground truth of instance
|
||||
annotations. It includes "labels", with shape (k, ),
|
||||
and "masks", with shape (k, h, w) or (k, l).
|
||||
|
||||
Returns:
|
||||
matched_quiery_inds (Tensor): The indexes of matched quieres.
|
||||
matched_label_inds (Tensor): The indexes of matched labels.
|
||||
"""
|
||||
# compute weighted cost
|
||||
cost_list = []
|
||||
with autocast(enabled=False):
|
||||
for match_cost in self.match_costs:
|
||||
cost = match_cost(
|
||||
pred_instances=pred_instances, gt_instances=gt_instances)
|
||||
cost_list.append(cost)
|
||||
cost = torch.stack(cost_list).sum(dim=0)
|
||||
|
||||
device = cost.device
|
||||
# do Hungarian matching on CPU using linear_sum_assignment
|
||||
cost = cost.detach().cpu()
|
||||
if linear_sum_assignment is None:
|
||||
raise ImportError('Please run "pip install scipy" '
|
||||
'to install scipy first.')
|
||||
|
||||
matched_quiery_inds, matched_label_inds = linear_sum_assignment(cost)
|
||||
matched_quiery_inds = torch.from_numpy(matched_quiery_inds).to(device)
|
||||
matched_label_inds = torch.from_numpy(matched_label_inds).to(device)
|
||||
|
||||
return matched_quiery_inds, matched_label_inds
|
||||
231
finetune/mmseg/models/assigners/match_cost.py
Normal file
231
finetune/mmseg/models/assigners/match_cost.py
Normal file
@@ -0,0 +1,231 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from abc import abstractmethod
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from mmengine.structures import InstanceData
|
||||
from torch import Tensor
|
||||
|
||||
from mmseg.registry import TASK_UTILS
|
||||
|
||||
|
||||
class BaseMatchCost:
|
||||
"""Base match cost class.
|
||||
|
||||
Args:
|
||||
weight (Union[float, int]): Cost weight. Defaults to 1.
|
||||
"""
|
||||
|
||||
def __init__(self, weight: Union[float, int] = 1.) -> None:
|
||||
self.weight = weight
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self, pred_instances: InstanceData,
|
||||
gt_instances: InstanceData, **kwargs) -> Tensor:
|
||||
"""Compute match cost.
|
||||
|
||||
Args:
|
||||
pred_instances (InstanceData): Instances of model predictions.
|
||||
It often includes "labels" and "scores".
|
||||
gt_instances (InstanceData): Ground truth of instance
|
||||
annotations. It usually includes "labels".
|
||||
|
||||
Returns:
|
||||
Tensor: Match Cost matrix of shape (num_preds, num_gts).
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
@TASK_UTILS.register_module()
|
||||
class ClassificationCost(BaseMatchCost):
|
||||
"""ClsSoftmaxCost.
|
||||
|
||||
Args:
|
||||
weight (Union[float, int]): Cost weight. Defaults to 1.
|
||||
|
||||
Examples:
|
||||
>>> from mmseg.models.assigners import ClassificationCost
|
||||
>>> import torch
|
||||
>>> self = ClassificationCost()
|
||||
>>> cls_pred = torch.rand(4, 3)
|
||||
>>> gt_labels = torch.tensor([0, 1, 2])
|
||||
>>> factor = torch.tensor([10, 8, 10, 8])
|
||||
>>> self(cls_pred, gt_labels)
|
||||
tensor([[-0.3430, -0.3525, -0.3045],
|
||||
[-0.3077, -0.2931, -0.3992],
|
||||
[-0.3664, -0.3455, -0.2881],
|
||||
[-0.3343, -0.2701, -0.3956]])
|
||||
"""
|
||||
|
||||
def __init__(self, weight: Union[float, int] = 1) -> None:
|
||||
super().__init__(weight=weight)
|
||||
|
||||
def __call__(self, pred_instances: InstanceData,
|
||||
gt_instances: InstanceData, **kwargs) -> Tensor:
|
||||
"""Compute match cost.
|
||||
|
||||
Args:
|
||||
pred_instances (InstanceData): "scores" inside is
|
||||
predicted classification logits, of shape
|
||||
(num_queries, num_class).
|
||||
gt_instances (InstanceData): "labels" inside should have
|
||||
shape (num_gt, ).
|
||||
|
||||
Returns:
|
||||
Tensor: Match Cost matrix of shape (num_preds, num_gts).
|
||||
"""
|
||||
assert hasattr(pred_instances, 'scores'), \
|
||||
"pred_instances must contain 'scores'"
|
||||
assert hasattr(gt_instances, 'labels'), \
|
||||
"gt_instances must contain 'labels'"
|
||||
pred_scores = pred_instances.scores
|
||||
gt_labels = gt_instances.labels
|
||||
|
||||
pred_scores = pred_scores.softmax(-1)
|
||||
cls_cost = -pred_scores[:, gt_labels]
|
||||
|
||||
return cls_cost * self.weight
|
||||
|
||||
|
||||
@TASK_UTILS.register_module()
|
||||
class DiceCost(BaseMatchCost):
|
||||
"""Cost of mask assignments based on dice losses.
|
||||
|
||||
Args:
|
||||
pred_act (bool): Whether to apply sigmoid to mask_pred.
|
||||
Defaults to False.
|
||||
eps (float): Defaults to 1e-3.
|
||||
naive_dice (bool): If True, use the naive dice loss
|
||||
in which the power of the number in the denominator is
|
||||
the first power. If False, use the second power that
|
||||
is adopted by K-Net and SOLO. Defaults to True.
|
||||
weight (Union[float, int]): Cost weight. Defaults to 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pred_act: bool = False,
|
||||
eps: float = 1e-3,
|
||||
naive_dice: bool = True,
|
||||
weight: Union[float, int] = 1.) -> None:
|
||||
super().__init__(weight=weight)
|
||||
self.pred_act = pred_act
|
||||
self.eps = eps
|
||||
self.naive_dice = naive_dice
|
||||
|
||||
def _binary_mask_dice_loss(self, mask_preds: Tensor,
|
||||
gt_masks: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
mask_preds (Tensor): Mask prediction in shape (num_queries, *).
|
||||
gt_masks (Tensor): Ground truth in shape (num_gt, *)
|
||||
store 0 or 1, 0 for negative class and 1 for
|
||||
positive class.
|
||||
|
||||
Returns:
|
||||
Tensor: Dice cost matrix in shape (num_queries, num_gt).
|
||||
"""
|
||||
mask_preds = mask_preds.flatten(1)
|
||||
gt_masks = gt_masks.flatten(1).float()
|
||||
numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks)
|
||||
if self.naive_dice:
|
||||
denominator = mask_preds.sum(-1)[:, None] + \
|
||||
gt_masks.sum(-1)[None, :]
|
||||
else:
|
||||
denominator = mask_preds.pow(2).sum(1)[:, None] + \
|
||||
gt_masks.pow(2).sum(1)[None, :]
|
||||
loss = 1 - (numerator + self.eps) / (denominator + self.eps)
|
||||
return loss
|
||||
|
||||
def __call__(self, pred_instances: InstanceData,
|
||||
gt_instances: InstanceData, **kwargs) -> Tensor:
|
||||
"""Compute match cost.
|
||||
|
||||
Args:
|
||||
pred_instances (InstanceData): Predicted instances which
|
||||
must contain "masks".
|
||||
gt_instances (InstanceData): Ground truth which must contain
|
||||
"mask".
|
||||
|
||||
Returns:
|
||||
Tensor: Match Cost matrix of shape (num_preds, num_gts).
|
||||
"""
|
||||
assert hasattr(pred_instances, 'masks'), \
|
||||
"pred_instances must contain 'masks'"
|
||||
assert hasattr(gt_instances, 'masks'), \
|
||||
"gt_instances must contain 'masks'"
|
||||
pred_masks = pred_instances.masks
|
||||
gt_masks = gt_instances.masks
|
||||
|
||||
if self.pred_act:
|
||||
pred_masks = pred_masks.sigmoid()
|
||||
dice_cost = self._binary_mask_dice_loss(pred_masks, gt_masks)
|
||||
return dice_cost * self.weight
|
||||
|
||||
|
||||
@TASK_UTILS.register_module()
|
||||
class CrossEntropyLossCost(BaseMatchCost):
|
||||
"""CrossEntropyLossCost.
|
||||
|
||||
Args:
|
||||
use_sigmoid (bool): Whether the prediction uses sigmoid
|
||||
of softmax. Defaults to True.
|
||||
weight (Union[float, int]): Cost weight. Defaults to 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
use_sigmoid: bool = True,
|
||||
weight: Union[float, int] = 1.) -> None:
|
||||
super().__init__(weight=weight)
|
||||
self.use_sigmoid = use_sigmoid
|
||||
|
||||
def _binary_cross_entropy(self, cls_pred: Tensor,
|
||||
gt_labels: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
cls_pred (Tensor): The prediction with shape (num_queries, 1, *) or
|
||||
(num_queries, *).
|
||||
gt_labels (Tensor): The learning label of prediction with
|
||||
shape (num_gt, *).
|
||||
|
||||
Returns:
|
||||
Tensor: Cross entropy cost matrix in shape (num_queries, num_gt).
|
||||
"""
|
||||
cls_pred = cls_pred.flatten(1).float()
|
||||
gt_labels = gt_labels.flatten(1).float()
|
||||
n = cls_pred.shape[1]
|
||||
pos = F.binary_cross_entropy_with_logits(
|
||||
cls_pred, torch.ones_like(cls_pred), reduction='none')
|
||||
neg = F.binary_cross_entropy_with_logits(
|
||||
cls_pred, torch.zeros_like(cls_pred), reduction='none')
|
||||
cls_cost = torch.einsum('nc,mc->nm', pos, gt_labels) + \
|
||||
torch.einsum('nc,mc->nm', neg, 1 - gt_labels)
|
||||
cls_cost = cls_cost / n
|
||||
|
||||
return cls_cost
|
||||
|
||||
def __call__(self, pred_instances: InstanceData,
|
||||
gt_instances: InstanceData, **kwargs) -> Tensor:
|
||||
"""Compute match cost.
|
||||
|
||||
Args:
|
||||
pred_instances (:obj:`InstanceData`): Predicted instances which
|
||||
must contain ``masks``.
|
||||
gt_instances (:obj:`InstanceData`): Ground truth which must contain
|
||||
``masks``.
|
||||
|
||||
Returns:
|
||||
Tensor: Match Cost matrix of shape (num_preds, num_gts).
|
||||
"""
|
||||
assert hasattr(pred_instances, 'masks'), \
|
||||
"pred_instances must contain 'masks'"
|
||||
assert hasattr(gt_instances, 'masks'), \
|
||||
"gt_instances must contain 'masks'"
|
||||
pred_masks = pred_instances.masks
|
||||
gt_masks = gt_instances.masks
|
||||
if self.use_sigmoid:
|
||||
cls_cost = self._binary_cross_entropy(pred_masks, gt_masks)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return cls_cost * self.weight
|
||||
Reference in New Issue
Block a user