init
This commit is contained in:
286
finetune/mmseg/evaluation/metrics/iou_metric.py
Normal file
286
finetune/mmseg/evaluation/metrics/iou_metric.py
Normal file
@@ -0,0 +1,286 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
from typing import Dict, List, Optional, Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmengine.dist import is_main_process
|
||||
from mmengine.evaluator import BaseMetric
|
||||
from mmengine.logging import MMLogger, print_log
|
||||
from mmengine.utils import mkdir_or_exist
|
||||
from PIL import Image
|
||||
from prettytable import PrettyTable
|
||||
|
||||
from mmseg.registry import METRICS
|
||||
|
||||
|
||||
@METRICS.register_module()
|
||||
class IoUMetric(BaseMetric):
|
||||
"""IoU evaluation metric.
|
||||
|
||||
Args:
|
||||
ignore_index (int): Index that will be ignored in evaluation.
|
||||
Default: 255.
|
||||
iou_metrics (list[str] | str): Metrics to be calculated, the options
|
||||
includes 'mIoU', 'mDice' and 'mFscore'.
|
||||
nan_to_num (int, optional): If specified, NaN values will be replaced
|
||||
by the numbers defined by the user. Default: None.
|
||||
beta (int): Determines the weight of recall in the combined score.
|
||||
Default: 1.
|
||||
collect_device (str): Device name used for collecting results from
|
||||
different ranks during distributed training. Must be 'cpu' or
|
||||
'gpu'. Defaults to 'cpu'.
|
||||
output_dir (str): The directory for output prediction. Defaults to
|
||||
None.
|
||||
format_only (bool): Only format result for results commit without
|
||||
perform evaluation. It is useful when you want to save the result
|
||||
to a specific format and submit it to the test server.
|
||||
Defaults to False.
|
||||
prefix (str, optional): The prefix that will be added in the metric
|
||||
names to disambiguate homonymous metrics of different evaluators.
|
||||
If prefix is not provided in the argument, self.default_prefix
|
||||
will be used instead. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
ignore_index: int = 255,
|
||||
iou_metrics: List[str] = ['mIoU'],
|
||||
nan_to_num: Optional[int] = None,
|
||||
beta: int = 1,
|
||||
collect_device: str = 'cpu',
|
||||
output_dir: Optional[str] = None,
|
||||
format_only: bool = False,
|
||||
prefix: Optional[str] = None,
|
||||
**kwargs) -> None:
|
||||
super().__init__(collect_device=collect_device, prefix=prefix)
|
||||
|
||||
self.ignore_index = ignore_index
|
||||
self.metrics = iou_metrics
|
||||
self.nan_to_num = nan_to_num
|
||||
self.beta = beta
|
||||
self.output_dir = output_dir
|
||||
if self.output_dir and is_main_process():
|
||||
mkdir_or_exist(self.output_dir)
|
||||
self.format_only = format_only
|
||||
|
||||
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
|
||||
"""Process one batch of data and data_samples.
|
||||
|
||||
The processed results should be stored in ``self.results``, which will
|
||||
be used to compute the metrics when all batches have been processed.
|
||||
|
||||
Args:
|
||||
data_batch (dict): A batch of data from the dataloader.
|
||||
data_samples (Sequence[dict]): A batch of outputs from the model.
|
||||
"""
|
||||
num_classes = len(self.dataset_meta['classes'])
|
||||
for data_sample in data_samples:
|
||||
pred_label = data_sample['pred_sem_seg']['data'].squeeze()
|
||||
# format_only always for test dataset without ground truth
|
||||
if not self.format_only:
|
||||
label = data_sample['gt_sem_seg']['data'].squeeze().to(
|
||||
pred_label)
|
||||
self.results.append(
|
||||
self.intersect_and_union(pred_label, label, num_classes,
|
||||
self.ignore_index))
|
||||
# format_result
|
||||
if self.output_dir is not None:
|
||||
basename = osp.splitext(osp.basename(
|
||||
data_sample['img_path']))[0]
|
||||
png_filename = osp.abspath(
|
||||
osp.join(self.output_dir, f'{basename}.png'))
|
||||
output_mask = pred_label.cpu().numpy()
|
||||
# The index range of official ADE20k dataset is from 0 to 150.
|
||||
# But the index range of output is from 0 to 149.
|
||||
# That is because we set reduce_zero_label=True.
|
||||
if data_sample.get('reduce_zero_label', False):
|
||||
output_mask = output_mask + 1
|
||||
output = Image.fromarray(output_mask.astype(np.uint8))
|
||||
output.save(png_filename)
|
||||
|
||||
def compute_metrics(self, results: list) -> Dict[str, float]:
|
||||
"""Compute the metrics from processed results.
|
||||
|
||||
Args:
|
||||
results (list): The processed results of each batch.
|
||||
|
||||
Returns:
|
||||
Dict[str, float]: The computed metrics. The keys are the names of
|
||||
the metrics, and the values are corresponding results. The key
|
||||
mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision,
|
||||
mRecall.
|
||||
"""
|
||||
logger: MMLogger = MMLogger.get_current_instance()
|
||||
if self.format_only:
|
||||
logger.info(f'results are saved to {osp.dirname(self.output_dir)}')
|
||||
return OrderedDict()
|
||||
# convert list of tuples to tuple of lists, e.g.
|
||||
# [(A_1, B_1, C_1, D_1), ..., (A_n, B_n, C_n, D_n)] to
|
||||
# ([A_1, ..., A_n], ..., [D_1, ..., D_n])
|
||||
results = tuple(zip(*results))
|
||||
assert len(results) == 4
|
||||
|
||||
total_area_intersect = sum(results[0])
|
||||
total_area_union = sum(results[1])
|
||||
total_area_pred_label = sum(results[2])
|
||||
total_area_label = sum(results[3])
|
||||
ret_metrics = self.total_area_to_metrics(
|
||||
total_area_intersect, total_area_union, total_area_pred_label,
|
||||
total_area_label, self.metrics, self.nan_to_num, self.beta)
|
||||
|
||||
class_names = self.dataset_meta['classes']
|
||||
|
||||
# summary table
|
||||
ret_metrics_summary = OrderedDict({
|
||||
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
|
||||
for ret_metric, ret_metric_value in ret_metrics.items()
|
||||
})
|
||||
metrics = dict()
|
||||
for key, val in ret_metrics_summary.items():
|
||||
if key == 'aAcc':
|
||||
metrics[key] = val
|
||||
else:
|
||||
metrics['m' + key] = val
|
||||
|
||||
# each class table
|
||||
ret_metrics.pop('aAcc', None)
|
||||
ret_metrics_class = OrderedDict({
|
||||
ret_metric: np.round(ret_metric_value * 100, 2)
|
||||
for ret_metric, ret_metric_value in ret_metrics.items()
|
||||
})
|
||||
ret_metrics_class.update({'Class': class_names})
|
||||
ret_metrics_class.move_to_end('Class', last=False)
|
||||
class_table_data = PrettyTable()
|
||||
for key, val in ret_metrics_class.items():
|
||||
class_table_data.add_column(key, val)
|
||||
|
||||
print_log('per class results:', logger)
|
||||
print_log('\n' + class_table_data.get_string(), logger=logger)
|
||||
|
||||
return metrics
|
||||
|
||||
@staticmethod
|
||||
def intersect_and_union(pred_label: torch.tensor, label: torch.tensor,
|
||||
num_classes: int, ignore_index: int):
|
||||
"""Calculate Intersection and Union.
|
||||
|
||||
Args:
|
||||
pred_label (torch.tensor): Prediction segmentation map
|
||||
or predict result filename. The shape is (H, W).
|
||||
label (torch.tensor): Ground truth segmentation map
|
||||
or label filename. The shape is (H, W).
|
||||
num_classes (int): Number of categories.
|
||||
ignore_index (int): Index that will be ignored in evaluation.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The intersection of prediction and ground truth
|
||||
histogram on all classes.
|
||||
torch.Tensor: The union of prediction and ground truth histogram on
|
||||
all classes.
|
||||
torch.Tensor: The prediction histogram on all classes.
|
||||
torch.Tensor: The ground truth histogram on all classes.
|
||||
"""
|
||||
|
||||
mask = (label != ignore_index)
|
||||
pred_label = pred_label[mask]
|
||||
label = label[mask]
|
||||
|
||||
intersect = pred_label[pred_label == label]
|
||||
area_intersect = torch.histc(
|
||||
intersect.float(), bins=(num_classes), min=0,
|
||||
max=num_classes - 1).cpu()
|
||||
area_pred_label = torch.histc(
|
||||
pred_label.float(), bins=(num_classes), min=0,
|
||||
max=num_classes - 1).cpu()
|
||||
area_label = torch.histc(
|
||||
label.float(), bins=(num_classes), min=0,
|
||||
max=num_classes - 1).cpu()
|
||||
area_union = area_pred_label + area_label - area_intersect
|
||||
return area_intersect, area_union, area_pred_label, area_label
|
||||
|
||||
@staticmethod
|
||||
def total_area_to_metrics(total_area_intersect: np.ndarray,
|
||||
total_area_union: np.ndarray,
|
||||
total_area_pred_label: np.ndarray,
|
||||
total_area_label: np.ndarray,
|
||||
metrics: List[str] = ['mIoU'],
|
||||
nan_to_num: Optional[int] = None,
|
||||
beta: int = 1):
|
||||
"""Calculate evaluation metrics
|
||||
Args:
|
||||
total_area_intersect (np.ndarray): The intersection of prediction
|
||||
and ground truth histogram on all classes.
|
||||
total_area_union (np.ndarray): The union of prediction and ground
|
||||
truth histogram on all classes.
|
||||
total_area_pred_label (np.ndarray): The prediction histogram on
|
||||
all classes.
|
||||
total_area_label (np.ndarray): The ground truth histogram on
|
||||
all classes.
|
||||
metrics (List[str] | str): Metrics to be evaluated, 'mIoU' and
|
||||
'mDice'.
|
||||
nan_to_num (int, optional): If specified, NaN values will be
|
||||
replaced by the numbers defined by the user. Default: None.
|
||||
beta (int): Determines the weight of recall in the combined score.
|
||||
Default: 1.
|
||||
Returns:
|
||||
Dict[str, np.ndarray]: per category evaluation metrics,
|
||||
shape (num_classes, ).
|
||||
"""
|
||||
|
||||
def f_score(precision, recall, beta=1):
|
||||
"""calculate the f-score value.
|
||||
|
||||
Args:
|
||||
precision (float | torch.Tensor): The precision value.
|
||||
recall (float | torch.Tensor): The recall value.
|
||||
beta (int): Determines the weight of recall in the combined
|
||||
score. Default: 1.
|
||||
|
||||
Returns:
|
||||
[torch.tensor]: The f-score value.
|
||||
"""
|
||||
score = (1 + beta**2) * (precision * recall) / (
|
||||
(beta**2 * precision) + recall)
|
||||
return score
|
||||
|
||||
if isinstance(metrics, str):
|
||||
metrics = [metrics]
|
||||
allowed_metrics = ['mIoU', 'mDice', 'mFscore']
|
||||
if not set(metrics).issubset(set(allowed_metrics)):
|
||||
raise KeyError(f'metrics {metrics} is not supported')
|
||||
|
||||
all_acc = total_area_intersect.sum() / total_area_label.sum()
|
||||
ret_metrics = OrderedDict({'aAcc': all_acc})
|
||||
for metric in metrics:
|
||||
if metric == 'mIoU':
|
||||
iou = total_area_intersect / total_area_union
|
||||
acc = total_area_intersect / total_area_label
|
||||
ret_metrics['IoU'] = iou
|
||||
ret_metrics['Acc'] = acc
|
||||
elif metric == 'mDice':
|
||||
dice = 2 * total_area_intersect / (
|
||||
total_area_pred_label + total_area_label)
|
||||
acc = total_area_intersect / total_area_label
|
||||
ret_metrics['Dice'] = dice
|
||||
ret_metrics['Acc'] = acc
|
||||
elif metric == 'mFscore':
|
||||
precision = total_area_intersect / total_area_pred_label
|
||||
recall = total_area_intersect / total_area_label
|
||||
f_value = torch.tensor([
|
||||
f_score(x[0], x[1], beta) for x in zip(precision, recall)
|
||||
])
|
||||
ret_metrics['Fscore'] = f_value
|
||||
ret_metrics['Precision'] = precision
|
||||
ret_metrics['Recall'] = recall
|
||||
|
||||
ret_metrics = {
|
||||
metric: value.numpy()
|
||||
for metric, value in ret_metrics.items()
|
||||
}
|
||||
if nan_to_num is not None:
|
||||
ret_metrics = OrderedDict({
|
||||
metric: np.nan_to_num(metric_value, nan=nan_to_num)
|
||||
for metric, metric_value in ret_metrics.items()
|
||||
})
|
||||
return ret_metrics
|
||||
Reference in New Issue
Block a user