init
This commit is contained in:
493
finetune/mmseg/datasets/transforms/loading_npz.py
Normal file
493
finetune/mmseg/datasets/transforms/loading_npz.py
Normal file
@@ -0,0 +1,493 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import warnings
|
||||
from typing import Dict, Optional, Union
|
||||
import io
|
||||
|
||||
import mmcv
|
||||
import mmengine.fileio as fileio
|
||||
import numpy as np
|
||||
from mmcv.transforms import BaseTransform
|
||||
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
|
||||
from mmcv.transforms import LoadImageFromFile
|
||||
import imageio
|
||||
from mmseg.registry import TRANSFORMS
|
||||
from mmseg.utils import datafrombytes
|
||||
|
||||
try:
|
||||
from osgeo import gdal
|
||||
except ImportError:
|
||||
gdal = None
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadAnnotationsNpz(MMCV_LoadAnnotations):
|
||||
"""Load annotations for semantic segmentation provided by dataset.
|
||||
|
||||
The annotation format is as the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
# Filename of semantic segmentation ground truth file.
|
||||
'seg_map_path': 'a/b/c'
|
||||
}
|
||||
|
||||
After this module, the annotation has been changed to the format below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
# in str
|
||||
'seg_fields': List
|
||||
# In uint8 type.
|
||||
'gt_seg_map': np.ndarray (H, W)
|
||||
}
|
||||
|
||||
Required Keys:
|
||||
|
||||
- seg_map_path (str): Path of semantic segmentation ground truth file.
|
||||
|
||||
Added Keys:
|
||||
|
||||
- seg_fields (List)
|
||||
- gt_seg_map (np.uint8)
|
||||
|
||||
Args:
|
||||
reduce_zero_label (bool, optional): Whether reduce all label value
|
||||
by 1. Usually used for datasets where 0 is background label.
|
||||
Defaults to None.
|
||||
imdecode_backend (str): The image decoding backend type. The backend
|
||||
argument for :func:``mmcv.imfrombytes``.
|
||||
See :fun:``mmcv.imfrombytes`` for details.
|
||||
Defaults to 'pillow'.
|
||||
backend_args (dict): Arguments to instantiate a file backend.
|
||||
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
|
||||
for details. Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reduce_zero_label=None,
|
||||
backend_args=None,
|
||||
data_key='arr_0',
|
||||
imdecode_backend='pillow',
|
||||
) -> None:
|
||||
super().__init__(
|
||||
with_bbox=False,
|
||||
with_label=False,
|
||||
with_seg=True,
|
||||
with_keypoints=False,
|
||||
imdecode_backend=imdecode_backend,
|
||||
backend_args=backend_args)
|
||||
self.reduce_zero_label = reduce_zero_label
|
||||
if self.reduce_zero_label is not None:
|
||||
warnings.warn('`reduce_zero_label` will be deprecated, '
|
||||
'if you would like to ignore the zero label, please '
|
||||
'set `reduce_zero_label=True` when dataset '
|
||||
'initialized')
|
||||
self.imdecode_backend = imdecode_backend
|
||||
self.data_key = data_key
|
||||
|
||||
def _load_seg_map(self, results: dict) -> None:
|
||||
"""Private function to load semantic segmentation annotations.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded semantic segmentation annotations.
|
||||
"""
|
||||
|
||||
# img_bytes = fileio.get(
|
||||
# results['seg_map_path'], backend_args=self.backend_args)
|
||||
# gt_semantic_seg = mmcv.imfrombytes(
|
||||
# img_bytes, flag='unchanged',
|
||||
# backend=self.imdecode_backend).squeeze().astype(np.uint8)
|
||||
gt_semantic_seg = np.load(results['seg_map_path'])[self.data_key].squeeze().astype(np.uint8)
|
||||
# reduce zero_label
|
||||
if self.reduce_zero_label is None:
|
||||
self.reduce_zero_label = results['reduce_zero_label']
|
||||
assert self.reduce_zero_label == results['reduce_zero_label'], \
|
||||
'Initialize dataset with `reduce_zero_label` as ' \
|
||||
f'{results["reduce_zero_label"]} but when load annotation ' \
|
||||
f'the `reduce_zero_label` is {self.reduce_zero_label}'
|
||||
if self.reduce_zero_label:
|
||||
# avoid using underflow conversion
|
||||
gt_semantic_seg[gt_semantic_seg == 0] = 255
|
||||
gt_semantic_seg = gt_semantic_seg - 1
|
||||
gt_semantic_seg[gt_semantic_seg == 254] = 255
|
||||
# modify if custom classes
|
||||
if results.get('label_map', None) is not None:
|
||||
# Add deep copy to solve bug of repeatedly
|
||||
# replace `gt_semantic_seg`, which is reported in
|
||||
# https://github.com/open-mmlab/mmsegmentation/pull/1445/
|
||||
gt_semantic_seg_copy = gt_semantic_seg.copy()
|
||||
for old_id, new_id in results['label_map'].items():
|
||||
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
|
||||
results['gt_seg_map'] = gt_semantic_seg
|
||||
results['seg_fields'].append('gt_seg_map')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
repr_str = self.__class__.__name__
|
||||
repr_str += f'(reduce_zero_label={self.reduce_zero_label}, '
|
||||
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
|
||||
repr_str += f'backend_args={self.backend_args})'
|
||||
return repr_str
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadImageSingleChannel(BaseTransform):
|
||||
"""Load a Remote Sensing mage from file.
|
||||
|
||||
Required Keys:
|
||||
|
||||
- img_path
|
||||
|
||||
Modified Keys:
|
||||
|
||||
- img
|
||||
- img_shape
|
||||
- ori_shape
|
||||
|
||||
Args:
|
||||
to_float32 (bool): Whether to convert the loaded image to a float32
|
||||
numpy array. If set to False, the loaded image is a float64 array.
|
||||
Defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self, to_float32: bool = True):
|
||||
self.to_float32 = to_float32
|
||||
# self.data_key = data_key
|
||||
if gdal is None:
|
||||
raise RuntimeError('gdal is not installed')
|
||||
|
||||
def transform(self, results: Dict) -> Dict:
|
||||
"""Functions to load image.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded image and meta information.
|
||||
"""
|
||||
|
||||
filename = results['img_path']
|
||||
img = imageio.imread(filename) # h, w, c
|
||||
img = img[:, :, 0]
|
||||
# if ds is None:
|
||||
# raise Exception(f'Unable to open file: {filename}')
|
||||
# print(img)s
|
||||
# img = np.einsum('ijk->jki', img)
|
||||
|
||||
if self.to_float32:
|
||||
img = img.astype(np.float32)
|
||||
|
||||
results['img'] = img
|
||||
results['img_shape'] = img.shape[:2]
|
||||
results['ori_shape'] = img.shape[:2]
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f'to_float32={self.to_float32})')
|
||||
return repr_str
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadAnnotationsOil(MMCV_LoadAnnotations):
|
||||
"""Load annotations for semantic segmentation provided by dataset.
|
||||
|
||||
The annotation format is as the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
# Filename of semantic segmentation ground truth file.
|
||||
'seg_map_path': 'a/b/c'
|
||||
}
|
||||
|
||||
After this module, the annotation has been changed to the format below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
# in str
|
||||
'seg_fields': List
|
||||
# In uint8 type.
|
||||
'gt_seg_map': np.ndarray (H, W)
|
||||
}
|
||||
|
||||
Required Keys:
|
||||
|
||||
- seg_map_path (str): Path of semantic segmentation ground truth file.
|
||||
|
||||
Added Keys:
|
||||
|
||||
- seg_fields (List)
|
||||
- gt_seg_map (np.uint8)
|
||||
|
||||
Args:
|
||||
reduce_zero_label (bool, optional): Whether reduce all label value
|
||||
by 1. Usually used for datasets where 0 is background label.
|
||||
Defaults to None.
|
||||
imdecode_backend (str): The image decoding backend type. The backend
|
||||
argument for :func:``mmcv.imfrombytes``.
|
||||
See :fun:``mmcv.imfrombytes`` for details.
|
||||
Defaults to 'pillow'.
|
||||
backend_args (dict): Arguments to instantiate a file backend.
|
||||
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
|
||||
for details. Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reduce_zero_label=None,
|
||||
backend_args=None,
|
||||
data_key='arr_0',
|
||||
imdecode_backend='pillow',
|
||||
) -> None:
|
||||
super().__init__(
|
||||
with_bbox=False,
|
||||
with_label=False,
|
||||
with_seg=True,
|
||||
with_keypoints=False,
|
||||
imdecode_backend=imdecode_backend,
|
||||
backend_args=backend_args)
|
||||
self.reduce_zero_label = reduce_zero_label
|
||||
if self.reduce_zero_label is not None:
|
||||
warnings.warn('`reduce_zero_label` will be deprecated, '
|
||||
'if you would like to ignore the zero label, please '
|
||||
'set `reduce_zero_label=True` when dataset '
|
||||
'initialized')
|
||||
self.imdecode_backend = imdecode_backend
|
||||
self.data_key = data_key
|
||||
|
||||
def _load_seg_map(self, results: dict) -> None:
|
||||
"""Private function to load semantic segmentation annotations.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded semantic segmentation annotations.
|
||||
"""
|
||||
|
||||
# img_bytes = fileio.get(
|
||||
# results['seg_map_path'], backend_args=self.backend_args)
|
||||
# gt_semantic_seg = mmcv.imfrombytes(
|
||||
# img_bytes, flag='unchanged',
|
||||
# backend=self.imdecode_backend).squeeze().astype(np.uint8)
|
||||
seg_map = gdal.Open(results['seg_map_path']).ReadAsArray()
|
||||
gt_semantic_seg = np.zeros_like(seg_map).astype(np.uint8)
|
||||
gt_semantic_seg[seg_map==3.] = 1
|
||||
# reduce zero_label
|
||||
if self.reduce_zero_label is None:
|
||||
self.reduce_zero_label = results['reduce_zero_label']
|
||||
assert self.reduce_zero_label == results['reduce_zero_label'], \
|
||||
'Initialize dataset with `reduce_zero_label` as ' \
|
||||
f'{results["reduce_zero_label"]} but when load annotation ' \
|
||||
f'the `reduce_zero_label` is {self.reduce_zero_label}'
|
||||
if self.reduce_zero_label:
|
||||
# avoid using underflow conversion
|
||||
gt_semantic_seg[gt_semantic_seg == 0] = 255
|
||||
gt_semantic_seg = gt_semantic_seg - 1
|
||||
gt_semantic_seg[gt_semantic_seg == 254] = 255
|
||||
# modify if custom classes
|
||||
if results.get('label_map', None) is not None:
|
||||
# Add deep copy to solve bug of repeatedly
|
||||
# replace `gt_semantic_seg`, which is reported in
|
||||
# https://github.com/open-mmlab/mmsegmentation/pull/1445/
|
||||
gt_semantic_seg_copy = gt_semantic_seg.copy()
|
||||
for old_id, new_id in results['label_map'].items():
|
||||
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
|
||||
results['gt_seg_map'] = gt_semantic_seg
|
||||
results['seg_fields'].append('gt_seg_map')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
repr_str = self.__class__.__name__
|
||||
repr_str += f'(reduce_zero_label={self.reduce_zero_label}, '
|
||||
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
|
||||
repr_str += f'backend_args={self.backend_args})'
|
||||
return repr_str
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadImageFromNpz(BaseTransform):
|
||||
"""Load a Remote Sensing mage from file.
|
||||
|
||||
Required Keys:
|
||||
|
||||
- img_path
|
||||
|
||||
Modified Keys:
|
||||
|
||||
- img
|
||||
- img_shape
|
||||
- ori_shape
|
||||
|
||||
Args:
|
||||
to_float32 (bool): Whether to convert the loaded image to a float32
|
||||
numpy array. If set to False, the loaded image is a float64 array.
|
||||
Defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self, data_key='arr_0', to_float32: bool = True):
|
||||
self.to_float32 = to_float32
|
||||
self.data_key = data_key
|
||||
if gdal is None:
|
||||
raise RuntimeError('gdal is not installed')
|
||||
|
||||
def transform(self, results: Dict) -> Dict:
|
||||
"""Functions to load image.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded image and meta information.
|
||||
"""
|
||||
|
||||
filename = results['img_path']
|
||||
img = np.load(filename)[self.data_key]
|
||||
# if ds is None:
|
||||
# raise Exception(f'Unable to open file: {filename}')
|
||||
# print(img)s
|
||||
img = np.einsum('ijk->jki', img)
|
||||
|
||||
if self.to_float32:
|
||||
img = img.astype(np.float32)
|
||||
|
||||
results['img'] = img
|
||||
results['img_shape'] = img.shape[:2]
|
||||
results['ori_shape'] = img.shape[:2]
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f'to_float32={self.to_float32})')
|
||||
return repr_str
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadImageOil(BaseTransform):
|
||||
"""Load a Remote Sensing mage from file.
|
||||
|
||||
Required Keys:
|
||||
|
||||
- img_path
|
||||
|
||||
Modified Keys:
|
||||
|
||||
- img
|
||||
- img_shape
|
||||
- ori_shape
|
||||
|
||||
Args:
|
||||
to_float32 (bool): Whether to convert the loaded image to a float32
|
||||
numpy array. If set to False, the loaded image is a float64 array.
|
||||
Defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self, data_key='arr_0', to_float32: bool = True):
|
||||
self.to_float32 = to_float32
|
||||
self.data_key = data_key
|
||||
if gdal is None:
|
||||
raise RuntimeError('gdal is not installed')
|
||||
|
||||
def transform(self, results: Dict) -> Dict:
|
||||
"""Functions to load image.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded image and meta information.
|
||||
"""
|
||||
|
||||
filename = results['img_path']
|
||||
img = gdal.Open(filename).ReadAsArray()
|
||||
img = img[:,:,None]
|
||||
# if ds is None:
|
||||
# raise Exception(f'Unable to open file: {filename}')
|
||||
# print(img)s
|
||||
# img = np.einsum('ijk->jki', img)
|
||||
|
||||
if self.to_float32:
|
||||
img = img.astype(np.float32)
|
||||
|
||||
results['img'] = img
|
||||
results['img_shape'] = img.shape[:2]
|
||||
results['ori_shape'] = img.shape[:2]
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f'to_float32={self.to_float32})')
|
||||
return repr_str
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadTsImageFromNpz(BaseTransform):
|
||||
"""Load a Remote Sensing mage from file.
|
||||
|
||||
Required Keys:
|
||||
|
||||
- img_path
|
||||
|
||||
Modified Keys:
|
||||
|
||||
- img
|
||||
- img_shape
|
||||
- ori_shape
|
||||
|
||||
Args:
|
||||
to_float32 (bool): Whether to convert the loaded image to a float32
|
||||
numpy array. If set to False, the loaded image is a float64 array.
|
||||
Defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self, data_key='arr_0', to_float32: bool = True, ts_size: int=10):
|
||||
self.to_float32 = to_float32
|
||||
self.data_key = data_key
|
||||
if gdal is None:
|
||||
raise RuntimeError('gdal is not installed')
|
||||
self.ts_size = ts_size
|
||||
|
||||
def transform(self, results: Dict) -> Dict:
|
||||
"""Functions to load image.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded image and meta information.
|
||||
"""
|
||||
|
||||
filename = results['img_path']
|
||||
img = np.load(filename)[self.data_key]
|
||||
ts, c, h, w = img.shape
|
||||
if ts >= self.ts_size:
|
||||
selected_indices = np.random.choice(ts, size=self.ts_size, replace=False)
|
||||
else:
|
||||
selected_indices = np.random.choice(ts, size=self.ts_size, replace=True)
|
||||
selected_indices.sort()
|
||||
img = img[selected_indices, :, :, :]
|
||||
# print(f'after input shape: {img.shape}')
|
||||
img = img.transpose(2, 3, 0, 1).reshape(h, w, self.ts_size*c) # h, w, ts, c -> h, w, ts*c
|
||||
# if ds is None:
|
||||
# raise Exception(f'Unable to open file: {filename}')
|
||||
# print(img)s
|
||||
# img = np.einsum('ijk->jki', img)
|
||||
|
||||
if self.to_float32:
|
||||
img = img.astype(np.float32)
|
||||
|
||||
results['img'] = img
|
||||
results['img_shape'] = img.shape[:2]
|
||||
results['ori_shape'] = img.shape[:2]
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f'to_float32={self.to_float32})')
|
||||
return repr_str
|
||||
|
||||
|
||||
Reference in New Issue
Block a user