init
This commit is contained in:
112
finetune/mmseg/datasets/transforms/formatting.py
Normal file
112
finetune/mmseg/datasets/transforms/formatting.py
Normal file
@@ -0,0 +1,112 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from mmcv.transforms import to_tensor
|
||||
from mmcv.transforms.base import BaseTransform
|
||||
from mmengine.structures import PixelData
|
||||
|
||||
from mmseg.registry import TRANSFORMS
|
||||
from mmseg.structures import SegDataSample
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class PackSegInputs(BaseTransform):
|
||||
"""Pack the inputs data for the semantic segmentation.
|
||||
|
||||
The ``img_meta`` item is always populated. The contents of the
|
||||
``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
|
||||
|
||||
- ``img_path``: filename of the image
|
||||
|
||||
- ``ori_shape``: original shape of the image as a tuple (h, w, c)
|
||||
|
||||
- ``img_shape``: shape of the image input to the network as a tuple \
|
||||
(h, w, c). Note that images may be zero padded on the \
|
||||
bottom/right if the batch tensor is larger than this shape.
|
||||
|
||||
- ``pad_shape``: shape of padded images
|
||||
|
||||
- ``scale_factor``: a float indicating the preprocessing scale
|
||||
|
||||
- ``flip``: a boolean indicating if image flip transform was used
|
||||
|
||||
- ``flip_direction``: the flipping direction
|
||||
|
||||
Args:
|
||||
meta_keys (Sequence[str], optional): Meta keys to be packed from
|
||||
``SegDataSample`` and collected in ``data[img_metas]``.
|
||||
Default: ``('img_path', 'ori_shape',
|
||||
'img_shape', 'pad_shape', 'scale_factor', 'flip',
|
||||
'flip_direction')``
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
meta_keys=('img_path', 'seg_map_path', 'ori_shape',
|
||||
'img_shape', 'pad_shape', 'scale_factor', 'flip',
|
||||
'flip_direction', 'reduce_zero_label')):
|
||||
self.meta_keys = meta_keys
|
||||
|
||||
def transform(self, results: dict) -> dict:
|
||||
"""Method to pack the input data.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from the data pipeline.
|
||||
|
||||
Returns:
|
||||
dict:
|
||||
|
||||
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
|
||||
- 'data_sample' (obj:`SegDataSample`): The annotation info of the
|
||||
sample.
|
||||
"""
|
||||
packed_results = dict()
|
||||
if 'img' in results:
|
||||
img = results['img']
|
||||
if len(img.shape) < 3:
|
||||
img = np.expand_dims(img, -1)
|
||||
if not img.flags.c_contiguous:
|
||||
img = to_tensor(np.ascontiguousarray(img.transpose(2, 0, 1)))
|
||||
else:
|
||||
img = img.transpose(2, 0, 1)
|
||||
img = to_tensor(img).contiguous()
|
||||
packed_results['inputs'] = img
|
||||
|
||||
data_sample = SegDataSample()
|
||||
if 'gt_seg_map' in results:
|
||||
if len(results['gt_seg_map'].shape) == 2:
|
||||
data = to_tensor(results['gt_seg_map'][None,
|
||||
...].astype(np.int64))
|
||||
else:
|
||||
warnings.warn('Please pay attention your ground truth '
|
||||
'segmentation map, usually the segmentation '
|
||||
'map is 2D, but got '
|
||||
f'{results["gt_seg_map"].shape}')
|
||||
data = to_tensor(results['gt_seg_map'].astype(np.int64))
|
||||
gt_sem_seg_data = dict(data=data)
|
||||
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
|
||||
|
||||
if 'gt_edge_map' in results:
|
||||
gt_edge_data = dict(
|
||||
data=to_tensor(results['gt_edge_map'][None,
|
||||
...].astype(np.int64)))
|
||||
data_sample.set_data(dict(gt_edge_map=PixelData(**gt_edge_data)))
|
||||
|
||||
if 'gt_depth_map' in results:
|
||||
gt_depth_data = dict(
|
||||
data=to_tensor(results['gt_depth_map'][None, ...]))
|
||||
data_sample.set_data(dict(gt_depth_map=PixelData(**gt_depth_data)))
|
||||
|
||||
img_meta = {}
|
||||
for key in self.meta_keys:
|
||||
if key in results:
|
||||
img_meta[key] = results[key]
|
||||
data_sample.set_metainfo(img_meta)
|
||||
packed_results['data_samples'] = data_sample
|
||||
|
||||
return packed_results
|
||||
|
||||
def __repr__(self) -> str:
|
||||
repr_str = self.__class__.__name__
|
||||
repr_str += f'(meta_keys={self.meta_keys})'
|
||||
return repr_str
|
||||
Reference in New Issue
Block a user