init
This commit is contained in:
552
finetune/mmseg/datasets/basesegdataset.py
Normal file
552
finetune/mmseg/datasets/basesegdataset.py
Normal file
@@ -0,0 +1,552 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import copy
|
||||
import os.path as osp
|
||||
from typing import Callable, Dict, List, Optional, Sequence, Union
|
||||
|
||||
import mmengine
|
||||
import mmengine.fileio as fileio
|
||||
import numpy as np
|
||||
from mmengine.dataset import BaseDataset, Compose
|
||||
|
||||
from mmseg.registry import DATASETS
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class BaseSegDataset(BaseDataset):
|
||||
"""Custom dataset for semantic segmentation. An example of file structure
|
||||
is as followed.
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
├── data
|
||||
│ ├── my_dataset
|
||||
│ │ ├── img_dir
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── xxx{img_suffix}
|
||||
│ │ │ │ ├── yyy{img_suffix}
|
||||
│ │ │ │ ├── zzz{img_suffix}
|
||||
│ │ │ ├── val
|
||||
│ │ ├── ann_dir
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── xxx{seg_map_suffix}
|
||||
│ │ │ │ ├── yyy{seg_map_suffix}
|
||||
│ │ │ │ ├── zzz{seg_map_suffix}
|
||||
│ │ │ ├── val
|
||||
|
||||
The img/gt_semantic_seg pair of BaseSegDataset should be of the same
|
||||
except suffix. A valid img/gt_semantic_seg filename pair should be like
|
||||
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
|
||||
in the suffix). If split is given, then ``xxx`` is specified in txt file.
|
||||
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
|
||||
Please refer to ``docs/en/tutorials/new_dataset.md`` for more details.
|
||||
|
||||
|
||||
Args:
|
||||
ann_file (str): Annotation file path. Defaults to ''.
|
||||
metainfo (dict, optional): Meta information for dataset, such as
|
||||
specify classes to load. Defaults to None.
|
||||
data_root (str, optional): The root directory for ``data_prefix`` and
|
||||
``ann_file``. Defaults to None.
|
||||
data_prefix (dict, optional): Prefix for training data. Defaults to
|
||||
dict(img_path=None, seg_map_path=None).
|
||||
img_suffix (str): Suffix of images. Default: '.jpg'
|
||||
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
|
||||
filter_cfg (dict, optional): Config for filter data. Defaults to None.
|
||||
indices (int or Sequence[int], optional): Support using first few
|
||||
data in annotation file to facilitate training/testing on a smaller
|
||||
dataset. Defaults to None which means using all ``data_infos``.
|
||||
serialize_data (bool, optional): Whether to hold memory using
|
||||
serialized objects, when enabled, data loader workers can use
|
||||
shared RAM from master process instead of making a copy. Defaults
|
||||
to True.
|
||||
pipeline (list, optional): Processing pipeline. Defaults to [].
|
||||
test_mode (bool, optional): ``test_mode=True`` means in test phase.
|
||||
Defaults to False.
|
||||
lazy_init (bool, optional): Whether to load annotation during
|
||||
instantiation. In some cases, such as visualization, only the meta
|
||||
information of the dataset is needed, which is not necessary to
|
||||
load annotation file. ``Basedataset`` can skip load annotations to
|
||||
save time by set ``lazy_init=True``. Defaults to False.
|
||||
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
|
||||
None img. The maximum extra number of cycles to get a valid
|
||||
image. Defaults to 1000.
|
||||
ignore_index (int): The label index to be ignored. Default: 255
|
||||
reduce_zero_label (bool): Whether to mark label zero as ignored.
|
||||
Default to False.
|
||||
backend_args (dict, Optional): Arguments to instantiate a file backend.
|
||||
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
|
||||
for details. Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
METAINFO: dict = dict()
|
||||
|
||||
def __init__(self,
|
||||
ann_file: str = '',
|
||||
img_suffix='.jpg',
|
||||
seg_map_suffix='.png',
|
||||
metainfo: Optional[dict] = None,
|
||||
data_root: Optional[str] = None,
|
||||
data_prefix: dict = dict(img_path='', seg_map_path=''),
|
||||
filter_cfg: Optional[dict] = None,
|
||||
indices: Optional[Union[int, Sequence[int]]] = None,
|
||||
serialize_data: bool = True,
|
||||
pipeline: List[Union[dict, Callable]] = [],
|
||||
test_mode: bool = False,
|
||||
lazy_init: bool = False,
|
||||
max_refetch: int = 1000,
|
||||
ignore_index: int = 255,
|
||||
reduce_zero_label: bool = False,
|
||||
backend_args: Optional[dict] = None) -> None:
|
||||
|
||||
self.img_suffix = img_suffix
|
||||
self.seg_map_suffix = seg_map_suffix
|
||||
self.ignore_index = ignore_index
|
||||
self.reduce_zero_label = reduce_zero_label
|
||||
self.backend_args = backend_args.copy() if backend_args else None
|
||||
|
||||
self.data_root = data_root
|
||||
self.data_prefix = copy.copy(data_prefix)
|
||||
self.ann_file = ann_file
|
||||
self.filter_cfg = copy.deepcopy(filter_cfg)
|
||||
self._indices = indices
|
||||
self.serialize_data = serialize_data
|
||||
self.test_mode = test_mode
|
||||
self.max_refetch = max_refetch
|
||||
self.data_list: List[dict] = []
|
||||
self.data_bytes: np.ndarray
|
||||
|
||||
# Set meta information.
|
||||
self._metainfo = self._load_metainfo(copy.deepcopy(metainfo))
|
||||
|
||||
# Get label map for custom classes
|
||||
new_classes = self._metainfo.get('classes', None)
|
||||
self.label_map = self.get_label_map(new_classes)
|
||||
self._metainfo.update(
|
||||
dict(
|
||||
label_map=self.label_map,
|
||||
reduce_zero_label=self.reduce_zero_label))
|
||||
|
||||
# Update palette based on label map or generate palette
|
||||
# if it is not defined
|
||||
updated_palette = self._update_palette()
|
||||
self._metainfo.update(dict(palette=updated_palette))
|
||||
|
||||
# Join paths.
|
||||
if self.data_root is not None:
|
||||
self._join_prefix()
|
||||
|
||||
# Build pipeline.
|
||||
self.pipeline = Compose(pipeline)
|
||||
# Full initialize the dataset.
|
||||
if not lazy_init:
|
||||
self.full_init()
|
||||
|
||||
if test_mode:
|
||||
assert self._metainfo.get('classes') is not None, \
|
||||
'dataset metainfo `classes` should be specified when testing'
|
||||
|
||||
@classmethod
|
||||
def get_label_map(cls,
|
||||
new_classes: Optional[Sequence] = None
|
||||
) -> Union[Dict, None]:
|
||||
"""Require label mapping.
|
||||
|
||||
The ``label_map`` is a dictionary, its keys are the old label ids and
|
||||
its values are the new label ids, and is used for changing pixel
|
||||
labels in load_annotations. If and only if old classes in cls.METAINFO
|
||||
is not equal to new classes in self._metainfo and nether of them is not
|
||||
None, `label_map` is not None.
|
||||
|
||||
Args:
|
||||
new_classes (list, tuple, optional): The new classes name from
|
||||
metainfo. Default to None.
|
||||
|
||||
|
||||
Returns:
|
||||
dict, optional: The mapping from old classes in cls.METAINFO to
|
||||
new classes in self._metainfo
|
||||
"""
|
||||
old_classes = cls.METAINFO.get('classes', None)
|
||||
if (new_classes is not None and old_classes is not None
|
||||
and list(new_classes) != list(old_classes)):
|
||||
|
||||
label_map = {}
|
||||
if not set(new_classes).issubset(cls.METAINFO['classes']):
|
||||
raise ValueError(
|
||||
f'new classes {new_classes} is not a '
|
||||
f'subset of classes {old_classes} in METAINFO.')
|
||||
for i, c in enumerate(old_classes):
|
||||
if c not in new_classes:
|
||||
label_map[i] = 255
|
||||
else:
|
||||
label_map[i] = new_classes.index(c)
|
||||
return label_map
|
||||
else:
|
||||
return None
|
||||
|
||||
def _update_palette(self) -> list:
|
||||
"""Update palette after loading metainfo.
|
||||
|
||||
If length of palette is equal to classes, just return the palette.
|
||||
If palette is not defined, it will randomly generate a palette.
|
||||
If classes is updated by customer, it will return the subset of
|
||||
palette.
|
||||
|
||||
Returns:
|
||||
Sequence: Palette for current dataset.
|
||||
"""
|
||||
palette = self._metainfo.get('palette', [])
|
||||
classes = self._metainfo.get('classes', [])
|
||||
# palette does match classes
|
||||
if len(palette) == len(classes):
|
||||
return palette
|
||||
|
||||
if len(palette) == 0:
|
||||
# Get random state before set seed, and restore
|
||||
# random state later.
|
||||
# It will prevent loss of randomness, as the palette
|
||||
# may be different in each iteration if not specified.
|
||||
# See: https://github.com/open-mmlab/mmdetection/issues/5844
|
||||
state = np.random.get_state()
|
||||
np.random.seed(42)
|
||||
# random palette
|
||||
new_palette = np.random.randint(
|
||||
0, 255, size=(len(classes), 3)).tolist()
|
||||
np.random.set_state(state)
|
||||
elif len(palette) >= len(classes) and self.label_map is not None:
|
||||
new_palette = []
|
||||
# return subset of palette
|
||||
for old_id, new_id in sorted(
|
||||
self.label_map.items(), key=lambda x: x[1]):
|
||||
if new_id != 255:
|
||||
new_palette.append(palette[old_id])
|
||||
new_palette = type(palette)(new_palette)
|
||||
else:
|
||||
raise ValueError('palette does not match classes '
|
||||
f'as metainfo is {self._metainfo}.')
|
||||
return new_palette
|
||||
|
||||
def load_data_list(self) -> List[dict]:
|
||||
"""Load annotation from directory or annotation file.
|
||||
|
||||
Returns:
|
||||
list[dict]: All data info of dataset.
|
||||
"""
|
||||
data_list = []
|
||||
img_dir = self.data_prefix.get('img_path', None)
|
||||
ann_dir = self.data_prefix.get('seg_map_path', None)
|
||||
if not osp.isdir(self.ann_file) and self.ann_file:
|
||||
assert osp.isfile(self.ann_file), \
|
||||
f'Failed to load `ann_file` {self.ann_file}'
|
||||
lines = mmengine.list_from_file(
|
||||
self.ann_file, backend_args=self.backend_args)
|
||||
for line in lines:
|
||||
img_name = line.strip()
|
||||
data_info = dict(
|
||||
img_path=osp.join(img_dir, img_name + self.img_suffix))
|
||||
if ann_dir is not None:
|
||||
seg_map = img_name + self.seg_map_suffix
|
||||
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
|
||||
data_info['label_map'] = self.label_map
|
||||
data_info['reduce_zero_label'] = self.reduce_zero_label
|
||||
data_info['seg_fields'] = []
|
||||
data_list.append(data_info)
|
||||
else:
|
||||
_suffix_len = len(self.img_suffix)
|
||||
for img in fileio.list_dir_or_file(
|
||||
dir_path=img_dir,
|
||||
list_dir=False,
|
||||
suffix=self.img_suffix,
|
||||
recursive=True,
|
||||
backend_args=self.backend_args):
|
||||
data_info = dict(img_path=osp.join(img_dir, img))
|
||||
if ann_dir is not None:
|
||||
seg_map = img[:-_suffix_len] + self.seg_map_suffix
|
||||
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
|
||||
data_info['label_map'] = self.label_map
|
||||
data_info['reduce_zero_label'] = self.reduce_zero_label
|
||||
data_info['seg_fields'] = []
|
||||
data_list.append(data_info)
|
||||
data_list = sorted(data_list, key=lambda x: x['img_path'])
|
||||
return data_list
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class BaseCDDataset(BaseDataset):
|
||||
"""Custom dataset for change detection. An example of file structure is as
|
||||
followed.
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
├── data
|
||||
│ ├── my_dataset
|
||||
│ │ ├── img_dir
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── xxx{img_suffix}
|
||||
│ │ │ │ ├── yyy{img_suffix}
|
||||
│ │ │ │ ├── zzz{img_suffix}
|
||||
│ │ │ ├── val
|
||||
│ │ ├── img_dir2
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── xxx{img_suffix}
|
||||
│ │ │ │ ├── yyy{img_suffix}
|
||||
│ │ │ │ ├── zzz{img_suffix}
|
||||
│ │ │ ├── val
|
||||
│ │ ├── ann_dir
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── xxx{seg_map_suffix}
|
||||
│ │ │ │ ├── yyy{seg_map_suffix}
|
||||
│ │ │ │ ├── zzz{seg_map_suffix}
|
||||
│ │ │ ├── val
|
||||
|
||||
The image names in img_dir and img_dir2 should be consistent.
|
||||
The img/gt_semantic_seg pair of BaseSegDataset should be of the same
|
||||
except suffix. A valid img/gt_semantic_seg filename pair should be like
|
||||
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
|
||||
in the suffix). If split is given, then ``xxx`` is specified in txt file.
|
||||
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
|
||||
Please refer to ``docs/en/tutorials/new_dataset.md`` for more details.
|
||||
|
||||
|
||||
Args:
|
||||
ann_file (str): Annotation file path. Defaults to ''.
|
||||
metainfo (dict, optional): Meta information for dataset, such as
|
||||
specify classes to load. Defaults to None.
|
||||
data_root (str, optional): The root directory for ``data_prefix`` and
|
||||
``ann_file``. Defaults to None.
|
||||
data_prefix (dict, optional): Prefix for training data. Defaults to
|
||||
dict(img_path=None, img_path2=None, seg_map_path=None).
|
||||
img_suffix (str): Suffix of images. Default: '.jpg'
|
||||
img_suffix2 (str): Suffix of images. Default: '.jpg'
|
||||
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
|
||||
filter_cfg (dict, optional): Config for filter data. Defaults to None.
|
||||
indices (int or Sequence[int], optional): Support using first few
|
||||
data in annotation file to facilitate training/testing on a smaller
|
||||
dataset. Defaults to None which means using all ``data_infos``.
|
||||
serialize_data (bool, optional): Whether to hold memory using
|
||||
serialized objects, when enabled, data loader workers can use
|
||||
shared RAM from master process instead of making a copy. Defaults
|
||||
to True.
|
||||
pipeline (list, optional): Processing pipeline. Defaults to [].
|
||||
test_mode (bool, optional): ``test_mode=True`` means in test phase.
|
||||
Defaults to False.
|
||||
lazy_init (bool, optional): Whether to load annotation during
|
||||
instantiation. In some cases, such as visualization, only the meta
|
||||
information of the dataset is needed, which is not necessary to
|
||||
load annotation file. ``Basedataset`` can skip load annotations to
|
||||
save time by set ``lazy_init=True``. Defaults to False.
|
||||
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
|
||||
None img. The maximum extra number of cycles to get a valid
|
||||
image. Defaults to 1000.
|
||||
ignore_index (int): The label index to be ignored. Default: 255
|
||||
reduce_zero_label (bool): Whether to mark label zero as ignored.
|
||||
Default to False.
|
||||
backend_args (dict, Optional): Arguments to instantiate a file backend.
|
||||
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
|
||||
for details. Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
METAINFO: dict = dict()
|
||||
|
||||
def __init__(self,
|
||||
ann_file: str = '',
|
||||
img_suffix='.jpg',
|
||||
img_suffix2='.jpg',
|
||||
seg_map_suffix='.png',
|
||||
metainfo: Optional[dict] = None,
|
||||
data_root: Optional[str] = None,
|
||||
data_prefix: dict = dict(
|
||||
img_path='', img_path2='', seg_map_path=''),
|
||||
filter_cfg: Optional[dict] = None,
|
||||
indices: Optional[Union[int, Sequence[int]]] = None,
|
||||
serialize_data: bool = True,
|
||||
pipeline: List[Union[dict, Callable]] = [],
|
||||
test_mode: bool = False,
|
||||
lazy_init: bool = False,
|
||||
max_refetch: int = 1000,
|
||||
ignore_index: int = 255,
|
||||
reduce_zero_label: bool = False,
|
||||
backend_args: Optional[dict] = None) -> None:
|
||||
|
||||
self.img_suffix = img_suffix
|
||||
self.img_suffix2 = img_suffix2
|
||||
self.seg_map_suffix = seg_map_suffix
|
||||
self.ignore_index = ignore_index
|
||||
self.reduce_zero_label = reduce_zero_label
|
||||
self.backend_args = backend_args.copy() if backend_args else None
|
||||
|
||||
self.data_root = data_root
|
||||
self.data_prefix = copy.copy(data_prefix)
|
||||
self.ann_file = ann_file
|
||||
self.filter_cfg = copy.deepcopy(filter_cfg)
|
||||
self._indices = indices
|
||||
self.serialize_data = serialize_data
|
||||
self.test_mode = test_mode
|
||||
self.max_refetch = max_refetch
|
||||
self.data_list: List[dict] = []
|
||||
self.data_bytes: np.ndarray
|
||||
|
||||
# Set meta information.
|
||||
self._metainfo = self._load_metainfo(copy.deepcopy(metainfo))
|
||||
|
||||
# Get label map for custom classes
|
||||
new_classes = self._metainfo.get('classes', None)
|
||||
self.label_map = self.get_label_map(new_classes)
|
||||
self._metainfo.update(
|
||||
dict(
|
||||
label_map=self.label_map,
|
||||
reduce_zero_label=self.reduce_zero_label))
|
||||
|
||||
# Update palette based on label map or generate palette
|
||||
# if it is not defined
|
||||
updated_palette = self._update_palette()
|
||||
self._metainfo.update(dict(palette=updated_palette))
|
||||
|
||||
# Join paths.
|
||||
if self.data_root is not None:
|
||||
self._join_prefix()
|
||||
|
||||
# Build pipeline.
|
||||
self.pipeline = Compose(pipeline)
|
||||
# Full initialize the dataset.
|
||||
if not lazy_init:
|
||||
self.full_init()
|
||||
|
||||
if test_mode:
|
||||
assert self._metainfo.get('classes') is not None, \
|
||||
'dataset metainfo `classes` should be specified when testing'
|
||||
|
||||
@classmethod
|
||||
def get_label_map(cls,
|
||||
new_classes: Optional[Sequence] = None
|
||||
) -> Union[Dict, None]:
|
||||
"""Require label mapping.
|
||||
|
||||
The ``label_map`` is a dictionary, its keys are the old label ids and
|
||||
its values are the new label ids, and is used for changing pixel
|
||||
labels in load_annotations. If and only if old classes in cls.METAINFO
|
||||
is not equal to new classes in self._metainfo and nether of them is not
|
||||
None, `label_map` is not None.
|
||||
|
||||
Args:
|
||||
new_classes (list, tuple, optional): The new classes name from
|
||||
metainfo. Default to None.
|
||||
|
||||
|
||||
Returns:
|
||||
dict, optional: The mapping from old classes in cls.METAINFO to
|
||||
new classes in self._metainfo
|
||||
"""
|
||||
old_classes = cls.METAINFO.get('classes', None)
|
||||
if (new_classes is not None and old_classes is not None
|
||||
and list(new_classes) != list(old_classes)):
|
||||
|
||||
label_map = {}
|
||||
if not set(new_classes).issubset(cls.METAINFO['classes']):
|
||||
raise ValueError(
|
||||
f'new classes {new_classes} is not a '
|
||||
f'subset of classes {old_classes} in METAINFO.')
|
||||
for i, c in enumerate(old_classes):
|
||||
if c not in new_classes:
|
||||
label_map[i] = 255
|
||||
else:
|
||||
label_map[i] = new_classes.index(c)
|
||||
return label_map
|
||||
else:
|
||||
return None
|
||||
|
||||
def _update_palette(self) -> list:
|
||||
"""Update palette after loading metainfo.
|
||||
|
||||
If length of palette is equal to classes, just return the palette.
|
||||
If palette is not defined, it will randomly generate a palette.
|
||||
If classes is updated by customer, it will return the subset of
|
||||
palette.
|
||||
|
||||
Returns:
|
||||
Sequence: Palette for current dataset.
|
||||
"""
|
||||
palette = self._metainfo.get('palette', [])
|
||||
classes = self._metainfo.get('classes', [])
|
||||
# palette does match classes
|
||||
if len(palette) == len(classes):
|
||||
return palette
|
||||
|
||||
if len(palette) == 0:
|
||||
# Get random state before set seed, and restore
|
||||
# random state later.
|
||||
# It will prevent loss of randomness, as the palette
|
||||
# may be different in each iteration if not specified.
|
||||
# See: https://github.com/open-mmlab/mmdetection/issues/5844
|
||||
state = np.random.get_state()
|
||||
np.random.seed(42)
|
||||
# random palette
|
||||
new_palette = np.random.randint(
|
||||
0, 255, size=(len(classes), 3)).tolist()
|
||||
np.random.set_state(state)
|
||||
elif len(palette) >= len(classes) and self.label_map is not None:
|
||||
new_palette = []
|
||||
# return subset of palette
|
||||
for old_id, new_id in sorted(
|
||||
self.label_map.items(), key=lambda x: x[1]):
|
||||
if new_id != 255:
|
||||
new_palette.append(palette[old_id])
|
||||
new_palette = type(palette)(new_palette)
|
||||
else:
|
||||
raise ValueError('palette does not match classes '
|
||||
f'as metainfo is {self._metainfo}.')
|
||||
return new_palette
|
||||
|
||||
def load_data_list(self) -> List[dict]:
|
||||
"""Load annotation from directory or annotation file.
|
||||
|
||||
Returns:
|
||||
list[dict]: All data info of dataset.
|
||||
"""
|
||||
data_list = []
|
||||
img_dir = self.data_prefix.get('img_path', None)
|
||||
img_dir2 = self.data_prefix.get('img_path2', None)
|
||||
ann_dir = self.data_prefix.get('seg_map_path', None)
|
||||
if osp.isfile(self.ann_file):
|
||||
lines = mmengine.list_from_file(
|
||||
self.ann_file, backend_args=self.backend_args)
|
||||
for line in lines:
|
||||
img_name = line.strip()
|
||||
if '.' in osp.basename(img_name):
|
||||
img_name, img_ext = osp.splitext(img_name)
|
||||
self.img_suffix = img_ext
|
||||
self.img_suffix2 = img_ext
|
||||
data_info = dict(
|
||||
img_path=osp.join(img_dir, img_name + self.img_suffix),
|
||||
img_path2=osp.join(img_dir2, img_name + self.img_suffix2))
|
||||
|
||||
if ann_dir is not None:
|
||||
seg_map = img_name + self.seg_map_suffix
|
||||
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
|
||||
data_info['label_map'] = self.label_map
|
||||
data_info['reduce_zero_label'] = self.reduce_zero_label
|
||||
data_info['seg_fields'] = []
|
||||
data_list.append(data_info)
|
||||
else:
|
||||
for img in fileio.list_dir_or_file(
|
||||
dir_path=img_dir,
|
||||
list_dir=False,
|
||||
suffix=self.img_suffix,
|
||||
recursive=True,
|
||||
backend_args=self.backend_args):
|
||||
if '.' in osp.basename(img):
|
||||
img, img_ext = osp.splitext(img)
|
||||
self.img_suffix = img_ext
|
||||
self.img_suffix2 = img_ext
|
||||
data_info = dict(
|
||||
img_path=osp.join(img_dir, img + self.img_suffix),
|
||||
img_path2=osp.join(img_dir2, img + self.img_suffix2))
|
||||
if ann_dir is not None:
|
||||
seg_map = img + self.seg_map_suffix
|
||||
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
|
||||
data_info['label_map'] = self.label_map
|
||||
data_info['reduce_zero_label'] = self.reduce_zero_label
|
||||
data_info['seg_fields'] = []
|
||||
data_list.append(data_info)
|
||||
data_list = sorted(data_list, key=lambda x: x['img_path'])
|
||||
return data_list
|
||||
Reference in New Issue
Block a user