init
This commit is contained in:
41
finetune/mmseg/apis/utils.py
Normal file
41
finetune/mmseg/apis/utils.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from collections import defaultdict
|
||||
from typing import Sequence, Union
|
||||
|
||||
import numpy as np
|
||||
from mmengine.dataset import Compose
|
||||
from mmengine.model import BaseModel
|
||||
|
||||
ImageType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
|
||||
|
||||
|
||||
def _preprare_data(imgs: ImageType, model: BaseModel):
|
||||
|
||||
cfg = model.cfg
|
||||
for t in cfg.test_pipeline:
|
||||
if t.get('type') == 'LoadAnnotations':
|
||||
cfg.test_pipeline.remove(t)
|
||||
|
||||
is_batch = True
|
||||
if not isinstance(imgs, (list, tuple)):
|
||||
imgs = [imgs]
|
||||
is_batch = False
|
||||
|
||||
if isinstance(imgs[0], np.ndarray):
|
||||
cfg.test_pipeline[0]['type'] = 'LoadImageFromNDArray'
|
||||
|
||||
# TODO: Consider using the singleton pattern to avoid building
|
||||
# a pipeline for each inference
|
||||
pipeline = Compose(cfg.test_pipeline)
|
||||
|
||||
data = defaultdict(list)
|
||||
for img in imgs:
|
||||
if isinstance(img, np.ndarray):
|
||||
data_ = dict(img=img)
|
||||
else:
|
||||
data_ = dict(img_path=img)
|
||||
data_ = pipeline(data_)
|
||||
data['inputs'].append(data_['inputs'])
|
||||
data['data_samples'].append(data_['data_samples'])
|
||||
|
||||
return data, is_batch
|
||||
Reference in New Issue
Block a user