init
This commit is contained in:
382
finetune/mmseg/apis/mmseg_inferencer.py
Normal file
382
finetune/mmseg/apis/mmseg_inferencer.py
Normal file
@@ -0,0 +1,382 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
import warnings
|
||||
from typing import List, Optional, Sequence, Union
|
||||
|
||||
import mmcv
|
||||
import mmengine
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmcv.transforms import Compose
|
||||
from mmengine.infer.infer import BaseInferencer, ModelType
|
||||
from mmengine.model import revert_sync_batchnorm
|
||||
from mmengine.registry import init_default_scope
|
||||
from mmengine.runner.checkpoint import _load_checkpoint_to_model
|
||||
from PIL import Image
|
||||
|
||||
from mmseg.structures import SegDataSample
|
||||
from mmseg.utils import ConfigType, SampleList, get_classes, get_palette
|
||||
from mmseg.visualization import SegLocalVisualizer
|
||||
|
||||
InputType = Union[str, np.ndarray]
|
||||
InputsType = Union[InputType, Sequence[InputType]]
|
||||
PredType = Union[SegDataSample, SampleList]
|
||||
|
||||
|
||||
class MMSegInferencer(BaseInferencer):
|
||||
"""Semantic segmentation inferencer, provides inference and visualization
|
||||
interfaces. Note: MMEngine >= 0.5.0 is required.
|
||||
|
||||
Args:
|
||||
model (str, optional): Path to the config file or the model name
|
||||
defined in metafile. Take the `mmseg metafile <https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/metafile.yaml>`_
|
||||
as an example the `model` could be
|
||||
"fcn_r50-d8_4xb2-40k_cityscapes-512x1024", and the weights of model
|
||||
will be download automatically. If use config file, like
|
||||
"configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py", the
|
||||
`weights` should be defined.
|
||||
weights (str, optional): Path to the checkpoint. If it is not specified
|
||||
and model is a model name of metafile, the weights will be loaded
|
||||
from metafile. Defaults to None.
|
||||
classes (list, optional): Input classes for result rendering, as the
|
||||
prediction of segmentation model is a segment map with label
|
||||
indices, `classes` is a list which includes items responding to the
|
||||
label indices. If classes is not defined, visualizer will take
|
||||
`cityscapes` classes by default. Defaults to None.
|
||||
palette (list, optional): Input palette for result rendering, which is
|
||||
a list of color palette responding to the classes. If palette is
|
||||
not defined, visualizer will take `cityscapes` palette by default.
|
||||
Defaults to None.
|
||||
dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_
|
||||
visulizer will use the meta information of the dataset i.e. classes
|
||||
and palette, but the `classes` and `palette` have higher priority.
|
||||
Defaults to None.
|
||||
device (str, optional): Device to run inference. If None, the available
|
||||
device will be automatically used. Defaults to None.
|
||||
scope (str, optional): The scope of the model. Defaults to 'mmseg'.
|
||||
""" # noqa
|
||||
|
||||
preprocess_kwargs: set = set()
|
||||
forward_kwargs: set = {'mode', 'out_dir'}
|
||||
visualize_kwargs: set = {
|
||||
'show', 'wait_time', 'img_out_dir', 'opacity', 'return_vis',
|
||||
'with_labels'
|
||||
}
|
||||
postprocess_kwargs: set = {'pred_out_dir', 'return_datasample'}
|
||||
|
||||
def __init__(self,
|
||||
model: Union[ModelType, str],
|
||||
weights: Optional[str] = None,
|
||||
classes: Optional[Union[str, List]] = None,
|
||||
palette: Optional[Union[str, List]] = None,
|
||||
dataset_name: Optional[str] = None,
|
||||
device: Optional[str] = None,
|
||||
scope: Optional[str] = 'mmseg') -> None:
|
||||
# A global counter tracking the number of images processes, for
|
||||
# naming of the output images
|
||||
self.num_visualized_imgs = 0
|
||||
self.num_pred_imgs = 0
|
||||
init_default_scope(scope if scope else 'mmseg')
|
||||
super().__init__(
|
||||
model=model, weights=weights, device=device, scope=scope)
|
||||
|
||||
if device == 'cpu' or not torch.cuda.is_available():
|
||||
self.model = revert_sync_batchnorm(self.model)
|
||||
|
||||
assert isinstance(self.visualizer, SegLocalVisualizer)
|
||||
self.visualizer.set_dataset_meta(classes, palette, dataset_name)
|
||||
|
||||
def _load_weights_to_model(self, model: nn.Module,
|
||||
checkpoint: Optional[dict],
|
||||
cfg: Optional[ConfigType]) -> None:
|
||||
"""Loading model weights and meta information from cfg and checkpoint.
|
||||
|
||||
Subclasses could override this method to load extra meta information
|
||||
from ``checkpoint`` and ``cfg`` to model.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to load weights and meta information.
|
||||
checkpoint (dict, optional): The loaded checkpoint.
|
||||
cfg (Config or ConfigDict, optional): The loaded config.
|
||||
"""
|
||||
|
||||
if checkpoint is not None:
|
||||
_load_checkpoint_to_model(model, checkpoint)
|
||||
checkpoint_meta = checkpoint.get('meta', {})
|
||||
# save the dataset_meta in the model for convenience
|
||||
if 'dataset_meta' in checkpoint_meta:
|
||||
# mmsegmentation 1.x
|
||||
model.dataset_meta = {
|
||||
'classes': checkpoint_meta['dataset_meta'].get('classes'),
|
||||
'palette': checkpoint_meta['dataset_meta'].get('palette')
|
||||
}
|
||||
elif 'CLASSES' in checkpoint_meta:
|
||||
# mmsegmentation 0.x
|
||||
classes = checkpoint_meta['CLASSES']
|
||||
palette = checkpoint_meta.get('PALETTE', None)
|
||||
model.dataset_meta = {'classes': classes, 'palette': palette}
|
||||
else:
|
||||
warnings.warn(
|
||||
'dataset_meta or class names are not saved in the '
|
||||
'checkpoint\'s meta data, use classes of Cityscapes by '
|
||||
'default.')
|
||||
model.dataset_meta = {
|
||||
'classes': get_classes('cityscapes'),
|
||||
'palette': get_palette('cityscapes')
|
||||
}
|
||||
else:
|
||||
warnings.warn('Checkpoint is not loaded, and the inference '
|
||||
'result is calculated by the randomly initialized '
|
||||
'model!')
|
||||
warnings.warn(
|
||||
'weights is None, use cityscapes classes by default.')
|
||||
model.dataset_meta = {
|
||||
'classes': get_classes('cityscapes'),
|
||||
'palette': get_palette('cityscapes')
|
||||
}
|
||||
|
||||
def __call__(self,
|
||||
inputs: InputsType,
|
||||
return_datasamples: bool = False,
|
||||
batch_size: int = 1,
|
||||
return_vis: bool = False,
|
||||
show: bool = False,
|
||||
wait_time: int = 0,
|
||||
out_dir: str = '',
|
||||
img_out_dir: str = 'vis',
|
||||
pred_out_dir: str = 'pred',
|
||||
**kwargs) -> dict:
|
||||
"""Call the inferencer.
|
||||
|
||||
Args:
|
||||
inputs (Union[list, str, np.ndarray]): Inputs for the inferencer.
|
||||
return_datasamples (bool): Whether to return results as
|
||||
:obj:`SegDataSample`. Defaults to False.
|
||||
batch_size (int): Batch size. Defaults to 1.
|
||||
show (bool): Whether to display the rendering color segmentation
|
||||
mask in a popup window. Defaults to False.
|
||||
wait_time (float): The interval of show (s). Defaults to 0.
|
||||
out_dir (str): Output directory of inference results. Defaults
|
||||
to ''.
|
||||
img_out_dir (str): Subdirectory of `out_dir`, used to save
|
||||
rendering color segmentation mask, so `out_dir` must be defined
|
||||
if you would like to save predicted mask. Defaults to 'vis'.
|
||||
pred_out_dir (str): Subdirectory of `out_dir`, used to save
|
||||
predicted mask file, so `out_dir` must be defined if you would
|
||||
like to save predicted mask. Defaults to 'pred'.
|
||||
|
||||
**kwargs: Other keyword arguments passed to :meth:`preprocess`,
|
||||
:meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
|
||||
Each key in kwargs should be in the corresponding set of
|
||||
``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
|
||||
and ``postprocess_kwargs``.
|
||||
|
||||
|
||||
Returns:
|
||||
dict: Inference and visualization results.
|
||||
"""
|
||||
|
||||
if out_dir != '':
|
||||
pred_out_dir = osp.join(out_dir, pred_out_dir)
|
||||
img_out_dir = osp.join(out_dir, img_out_dir)
|
||||
else:
|
||||
pred_out_dir = ''
|
||||
img_out_dir = ''
|
||||
|
||||
return super().__call__(
|
||||
inputs=inputs,
|
||||
return_datasamples=return_datasamples,
|
||||
batch_size=batch_size,
|
||||
show=show,
|
||||
wait_time=wait_time,
|
||||
img_out_dir=img_out_dir,
|
||||
pred_out_dir=pred_out_dir,
|
||||
return_vis=return_vis,
|
||||
**kwargs)
|
||||
|
||||
def visualize(self,
|
||||
inputs: list,
|
||||
preds: List[dict],
|
||||
return_vis: bool = False,
|
||||
show: bool = False,
|
||||
wait_time: int = 0,
|
||||
img_out_dir: str = '',
|
||||
opacity: float = 0.8,
|
||||
with_labels: Optional[bool] = True) -> List[np.ndarray]:
|
||||
"""Visualize predictions.
|
||||
|
||||
Args:
|
||||
inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
|
||||
preds (Any): Predictions of the model.
|
||||
show (bool): Whether to display the image in a popup window.
|
||||
Defaults to False.
|
||||
wait_time (float): The interval of show (s). Defaults to 0.
|
||||
img_out_dir (str): Output directory of rendering prediction i.e.
|
||||
color segmentation mask. Defaults: ''
|
||||
opacity (int, float): The transparency of segmentation mask.
|
||||
Defaults to 0.8.
|
||||
|
||||
Returns:
|
||||
List[np.ndarray]: Visualization results.
|
||||
"""
|
||||
if not show and img_out_dir == '' and not return_vis:
|
||||
return None
|
||||
if self.visualizer is None:
|
||||
raise ValueError('Visualization needs the "visualizer" term'
|
||||
'defined in the config, but got None.')
|
||||
|
||||
self.visualizer.set_dataset_meta(**self.model.dataset_meta)
|
||||
self.visualizer.alpha = opacity
|
||||
|
||||
results = []
|
||||
|
||||
for single_input, pred in zip(inputs, preds):
|
||||
if isinstance(single_input, str):
|
||||
img_bytes = mmengine.fileio.get(single_input)
|
||||
img = mmcv.imfrombytes(img_bytes)
|
||||
img = img[:, :, ::-1]
|
||||
img_name = osp.basename(single_input)
|
||||
elif isinstance(single_input, np.ndarray):
|
||||
img = single_input.copy()
|
||||
img_num = str(self.num_visualized_imgs).zfill(8) + '_vis'
|
||||
img_name = f'{img_num}.jpg'
|
||||
else:
|
||||
raise ValueError('Unsupported input type:'
|
||||
f'{type(single_input)}')
|
||||
|
||||
out_file = osp.join(img_out_dir, img_name) if img_out_dir != ''\
|
||||
else None
|
||||
|
||||
self.visualizer.add_datasample(
|
||||
img_name,
|
||||
img,
|
||||
pred,
|
||||
show=show,
|
||||
wait_time=wait_time,
|
||||
draw_gt=False,
|
||||
draw_pred=True,
|
||||
out_file=out_file,
|
||||
with_labels=with_labels)
|
||||
if return_vis:
|
||||
results.append(self.visualizer.get_image())
|
||||
self.num_visualized_imgs += 1
|
||||
|
||||
return results if return_vis else None
|
||||
|
||||
def postprocess(self,
|
||||
preds: PredType,
|
||||
visualization: List[np.ndarray],
|
||||
return_datasample: bool = False,
|
||||
pred_out_dir: str = '') -> dict:
|
||||
"""Process the predictions and visualization results from ``forward``
|
||||
and ``visualize``.
|
||||
|
||||
This method should be responsible for the following tasks:
|
||||
|
||||
1. Pack the predictions and visualization results and return them.
|
||||
2. Save the predictions, if it needed.
|
||||
|
||||
Args:
|
||||
preds (List[Dict]): Predictions of the model.
|
||||
visualization (List[np.ndarray]): The list of rendering color
|
||||
segmentation mask.
|
||||
return_datasample (bool): Whether to return results as datasamples.
|
||||
Defaults to False.
|
||||
pred_out_dir: File to save the inference results w/o
|
||||
visualization. If left as empty, no file will be saved.
|
||||
Defaults to ''.
|
||||
|
||||
Returns:
|
||||
dict: Inference and visualization results with key ``predictions``
|
||||
and ``visualization``
|
||||
|
||||
- ``visualization (Any)``: Returned by :meth:`visualize`
|
||||
- ``predictions`` (List[np.ndarray], np.ndarray): Returned by
|
||||
:meth:`forward` and processed in :meth:`postprocess`.
|
||||
If ``return_datasample=False``, it will be the segmentation mask
|
||||
with label indice.
|
||||
"""
|
||||
if return_datasample:
|
||||
if len(preds) == 1:
|
||||
return preds[0]
|
||||
else:
|
||||
return preds
|
||||
|
||||
results_dict = {}
|
||||
|
||||
results_dict['predictions'] = []
|
||||
results_dict['visualization'] = []
|
||||
|
||||
for i, pred in enumerate(preds):
|
||||
pred_data = dict()
|
||||
if 'pred_sem_seg' in pred.keys():
|
||||
pred_data['sem_seg'] = pred.pred_sem_seg.numpy().data[0]
|
||||
elif 'pred_depth_map' in pred.keys():
|
||||
pred_data['depth_map'] = pred.pred_depth_map.numpy().data[0]
|
||||
|
||||
if visualization is not None:
|
||||
vis = visualization[i]
|
||||
results_dict['visualization'].append(vis)
|
||||
if pred_out_dir != '':
|
||||
mmengine.mkdir_or_exist(pred_out_dir)
|
||||
for key, data in pred_data.items():
|
||||
post_fix = '_pred.png' if key == 'sem_seg' else '_pred.npy'
|
||||
img_name = str(self.num_pred_imgs).zfill(8) + post_fix
|
||||
img_path = osp.join(pred_out_dir, img_name)
|
||||
if key == 'sem_seg':
|
||||
output = Image.fromarray(data.astype(np.uint8))
|
||||
output.save(img_path)
|
||||
else:
|
||||
np.save(img_path, data)
|
||||
pred_data = next(iter(pred_data.values()))
|
||||
results_dict['predictions'].append(pred_data)
|
||||
self.num_pred_imgs += 1
|
||||
|
||||
if len(results_dict['predictions']) == 1:
|
||||
results_dict['predictions'] = results_dict['predictions'][0]
|
||||
if visualization is not None:
|
||||
results_dict['visualization'] = \
|
||||
results_dict['visualization'][0]
|
||||
return results_dict
|
||||
|
||||
def _init_pipeline(self, cfg: ConfigType) -> Compose:
|
||||
"""Initialize the test pipeline.
|
||||
|
||||
Return a pipeline to handle various input data, such as ``str``,
|
||||
``np.ndarray``. It is an abstract method in BaseInferencer, and should
|
||||
be implemented in subclasses.
|
||||
|
||||
The returned pipeline will be used to process a single data.
|
||||
It will be used in :meth:`preprocess` like this:
|
||||
|
||||
.. code-block:: python
|
||||
def preprocess(self, inputs, batch_size, **kwargs):
|
||||
...
|
||||
dataset = map(self.pipeline, dataset)
|
||||
...
|
||||
"""
|
||||
pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
||||
# Loading annotations is also not applicable
|
||||
for transform in ('LoadAnnotations', 'LoadDepthAnnotation'):
|
||||
idx = self._get_transform_idx(pipeline_cfg, transform)
|
||||
if idx != -1:
|
||||
del pipeline_cfg[idx]
|
||||
|
||||
load_img_idx = self._get_transform_idx(pipeline_cfg,
|
||||
'LoadImageFromFile')
|
||||
if load_img_idx == -1:
|
||||
raise ValueError(
|
||||
'LoadImageFromFile is not found in the test pipeline')
|
||||
pipeline_cfg[load_img_idx]['type'] = 'InferencerLoader'
|
||||
return Compose(pipeline_cfg)
|
||||
|
||||
def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int:
|
||||
"""Returns the index of the transform in a pipeline.
|
||||
|
||||
If the transform is not found, returns -1.
|
||||
"""
|
||||
for i, transform in enumerate(pipeline_cfg):
|
||||
if transform['type'] == name:
|
||||
return i
|
||||
return -1
|
||||
Reference in New Issue
Block a user