This commit is contained in:
esenke
2025-12-08 22:16:31 +08:00
commit 01adcfdf60
305 changed files with 50879 additions and 0 deletions

227
finetune/configs/cabuar.py Normal file
View File

@@ -0,0 +1,227 @@
default_hooks = dict(
checkpoint=dict(
by_epoch=False,
interval=1000,
max_keep_ckpts=1,
save_best='mIoU',
type='CheckpointHook'),
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(type='SegVisualizationHook'))
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
launcher = 'pytorch'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
model = dict(
auxiliary_head=dict(
align_corners=False,
channels=256,
concat_input=False,
dropout_ratio=0.1,
in_channels=512,
in_index=3,
loss_decode=dict(
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=2,
num_convs=1,
type='FCNHead'),
backbone=dict(
act_cfg=dict(type='GELU'),
attn_drop_rate=0.0,
downscale_indices=(5, 11,),
drop_path_rate=0.0,
drop_rate=0.1,
embed_dims=1024,
img_size=(256, 256,),
in_channels=10,
interpolate_mode='bilinear',
mlp_ratio=4,
norm_cfg=dict(eps=1e-06, requires_grad=True, type='LN'),
norm_eval=False,
num_heads=16,
num_layers=24,
out_indices=(5, 11, 17, 23,),
patch_size=4,
qkv_bias=True,
type='VisionTransformer',
with_cls_token=False),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[4.50021132, 6.09891466, 7.50766315, 9.54643074, 12.82568112, 14.29062133, 15.24644993, 15.73945708, 16.60374872, 12.31011599,],
pad_val=0,
seg_pad_val=255,
size=(256, 256,),
std=[2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 2.6094148, 2.49566825, 1.37103968, 1.37103968, ],
type='SegDataPreProcessor'),
decode_head=dict(
align_corners=False,
channels=512,
dropout_ratio=0.1,
in_channels=[512, 512, 512, 512,],
in_index=[0, 1, 2, 3,],
loss_decode=dict(
loss_weight=1.0, type='CrossEntropyLoss', balance=True, max_scale=4.0, use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=2,
pool_scales=(1, 2, 3, 6,),
type='UPerHead'),
neck=dict(
in_channels=[1024, 1024, 1024, 1024,],
out_channels=512,
scales=[1, 1, 1, 1,],
type='MultiLevelNeck'),
pretrained='pretrain/skysensepp_mmcvt_s2.pth',
test_cfg=dict(mode='whole'),
train_cfg=dict(),
type='EncoderDecoder')
optim_wrapper = dict(
optimizer=dict(betas=(0.9, 0.999,), lr=None, type='AdamW', weight_decay=None,),
constructor='LearningRateDecayOptimizerConstructor',
paramwise_cfg=dict(
num_layers=24,
decay_rate=None,
decay_type='layer_wise',
custom_keys=dict(
cls_token=dict(decay_mult=0.0),
norm=dict(decay_mult=0.0),
pos_embed=dict(decay_mult=0.0))),
type='OptimWrapper')
param_scheduler = [
dict(
begin=0, by_epoch=False, end=1000, start_factor=1e-06,
type='LinearLR'),
dict(
begin=1000,
by_epoch=False,
end=10000,
eta_min=0.0,
power=1.0,
type='PolyLR'),
]
randomness = dict(seed=20240315)
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
batch_size=1,
dataset=dict(
ann_file=
'rs_datasets/cabuar/cabura_val_fold_4.json',
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
data_root='rs_datasets/',
pipeline=[
dict(data_key='image', type='LoadImageFromNpz'),
dict(
data_key='image',
reduce_zero_label=False,
type='LoadAnnotationsNpz'),
dict(type='PackSegInputs'),
],
type='CABURADataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
iou_metrics=[
'mIoU',
'mFscore',
], type='IoUMetric')
test_pipeline = [
dict(data_key='image', type='LoadImageFromNpz'),
dict(data_key='image', reduce_zero_label=False, type='LoadAnnotationsNpz'),
dict(type='PackSegInputs'),
]
train_cfg = dict(max_iters=10000, type='IterBasedTrainLoop', val_interval=500)
train_dataloader = dict(
batch_size=1,
dataset=dict(
ann_file=
'rs_datasets/cabuar/cabura_train_fold0_3.json',
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
data_root='rs_datasets/',
pipeline=[
dict(data_key='image', type='LoadImageFromNpz'),
dict(
data_key='image',
reduce_zero_label=False,
type='LoadAnnotationsNpz'),
dict(
cat_max_ratio=0.75, crop_size=(
256,
256,
), type='RandomCrop'),
dict(prob=0.5, type='RandomFlip'),
dict(type='PackSegInputs'),
],
type='CABURADataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=True, type='InfiniteSampler'))
tta_model = dict(type='SegTTAModel')
tta_pipeline = [
dict(backend_args=None, type='LoadImageFromFile'),
dict(
transforms=[
[
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
dict(keep_ratio=True, scale_factor=1.2, type='Resize'),
dict(keep_ratio=True, scale_factor=1.4, type='Resize'),
dict(keep_ratio=True, scale_factor=1.6, type='Resize'),
dict(keep_ratio=True, scale_factor=1.8, type='Resize'),
dict(keep_ratio=True, scale_factor=2.0, type='Resize'),
],
[
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
],
[
dict(type='LoadAnnotations'),
],
[
dict(type='PackSegInputs'),
],
],
type='TestTimeAug'),
]
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
batch_size=1,
dataset=dict(
ann_file=
'rs_datasets/cabuar/cabura_val_fold_4.json',
data_prefix=dict(img_path='images', seg_map_path='idx_labels'),
data_root='rs_datasets/',
pipeline=[
dict(data_key='image', type='LoadImageFromNpz'),
dict(
data_key='image',
reduce_zero_label=False,
type='LoadAnnotationsNpz'),
dict(type='PackSegInputs'),
],
type='CABURADataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
iou_metrics=[
'mIoU',
'mFscore',
], type='IoUMetric')
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
name='visualizer',
type='SegLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
])
work_dir = 'work_dirs/ft_cabura_test'